Library of graphic symbols for power equipment in the scalable vector graphics format
12/25/2015 2015 - #04 Modelling processes at nuclear facilities
https://doi.org/10.26583/npe.2015.4.09
UDC: 620.9:006.354:003.62:744:004.92
This paper describes the results of creation and application of library of graphic symbols of elements of power equipment under standards GOST 21.403=80 «Equipment energy», 2.789=74 «heat exchangers». The library is implemented in the format scalable vector graphics (SVG). The obtained solutions are in line with well known works on creation of parametrical libraries of fragments of the legend elements, schematics, and blueprints in systems design for different purposes. The SVG format is designed for use in web applications, so the SVG code for the items of power equipment in compliance with GOST 21.403=80, 2.789=74 is a necessary stage in the development of web programs of the thermodynamic optimization of power plants. One of the main arguments in favor of the SVG format is that it can be integrated with the calculated codes. So, in the process control systems, developed on the web=platform, the SVG format provides a dynamic user interface, giving functionality to mimic and change their composition depending on the availability and condition of equipment. An important basis for the development and use of the SVG format is that this format becomes a means of electronic document circulation in the sphere of design documentation within the framework of international standardization and unification of formats of information exchange. In work it is shown the effectiveness of format SVG for the layout of diagrams of power equipment. The library is intended for use in solving specific production problems associated with the analysis of thermal schemes of power plants and in the training of students. Library and related materials are available on the Internet. Formulated a number of proposals for the further development of the library.
References
- Horafas D., Legg S. Konstruktorskie bazy dannyh [The Engineering Database]. Moscow, Mashinostroenie Publ., 1990 (in Russian).
- Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C Recommendation. Available at: http://www.w3.org/TR/2011/REC-SVG11-20110816.
- Kariev Ch. Masshtabiruemaya vektornaya grafika [Scalable vector graphics]. Available at: http://intuit.ru/studies/courses/1063/210/info (in Russian).
- GOST 21.403-80. ESKD. Oboznachenija uslovnye graficheskie v shemah. Oborudovanie jenergeticheskoe [GOST 21.403-80. ESKD. Conditional graphic designations in schemes. Equipment energy] (in Russian).
- GOST 2.701-84. ESKD. Pravila vypolneniya shem [GOST 2.701-84. ESKD. Rules of implementation of schemes] (in Russian).
- GOST 2.789-74. ESKD. Oboznacheniya uslovnye graficheskie. Apparaty teploobmennye [GOST 2.789-74. ESKD. Conditional graphic designations. Heat exchangers] (in Russian).
- Gordeeva I.V., Kaurkin V.N., Mironova N.G., Netunaeva V.N., Poltavceva T.A, Stepanov Yu.V., Frolova G.M. Vypolnenie teplovyh shem energeticheskih ustanovok [The performance of thermal schemes of energy facilities]. Moscow, MEI Publ., 2010 (in Russian).
- Levental G. B., Popyrin L. S. Optimizaciya teploenergeticheskih ustanovok [Optimization of thermal power plants]. Moscow, Energiya Publ., 1970 (in Russian).
- Popyrin L. S. Matematicheskoe modelirovanie i optimizaciya teploenergeticheskih ustanovok [Mathematical modeling and optimization of thermal power plants]. Moscow, Energiya Publ., 1978.
- Popyrin L. S. Matematicheskoe modelirovanie i optimizaciya atomnyh elektrostancij [Mathematical modeling and optimization of nuclear power plants]. Moscow, Nauka Publ., 1984 (in Russian).
- Popyrin L.S., Samusev V.I., Jepelshtejn V.V. Avtomatizaciya matematicheskogo modelirovaniya teploenergeticheskih ustanovok [Automation of mathematical modeling of thermal power plants]. Moscow, Nauka Publ., 1981 (in Russian).
- Kanaev A.A., Ratnikov E.F., Kopp I.3. Termodinamicheskie cikly, shemy i energooborudovanie atomnyh elektrostancij [Thermodynamic cycles, schematic and the equipment of nuclear power plants]. Moscow, Atomizdat Publ., 1976 (in Russian).
- Gohshtejn D.P., Verhivker G.P. Analiz teplovyh shem atomnyh elektrostancij [Analysis of thermal schemes of nuclear power plants]. Kiev, Vishha shkola Publ., 1977 (in Russian).
- Moshkarin A.V., Shelygin B.L., Doverman G.I., Zakharenkov E.V., Zhamlikhanov T.A., Malkov E.S. Innovacionnye tehnologii v proektirovanii teplovyh shem paroturbinnyh, parogazovyh i isparitel’nyh ustanovok [Innovative technology in the design of thermal circuits of steam-turbine, combined-cycle and evaporative units]. Vestnik IGEU. 2011, iss. 4, pp. 6-10 (in Russian).
- Smirnov D.K., Galashov N.N. Programmnyj kompleks vizualnogo modelirovaniya shem teploenergeticheskih ustanovok [Software complex visual circuit simulation of thermal power plants]. Izvestija Tomskogo politehnicheskogo universiteta, 2012, v. 320, no. 4, pp. 6-10 (in Russian).
- Nikolaev M.A. Veb-kompleks teplofizicheskoj optimizacii AEU [Web complex of the thermal optimization of nuclear power plant]. Nauchno-tehnicheskij vestnik Povolzh’ya. 2014, iss. 1, pp. 130-133 (in Russian).
CAD power equipment scalable vector graphics SVG data exchange
Link for citing the article: Yuferov A.G. Library of graphic symbols for power equipment in the scalable vector graphics format. Izvestiya vuzov. Yadernaya Energetika. 2015, no. 4, pp. 79-89; DOI: https://doi.org/10.26583/npe.2015.4.09 (in Russian).