Boron-containing Radiator Coatings of Ionization Chambers of Neutron Flux Detection Sensors
3/25/2025 2025 - #01 Global safety, reliability and diagnostics of nuclear power installations
Baskov P.B. Salamakha B.S. Glazyuk Y.V. Namakshinas A.A. Bondarenko S.A. Mushin I.M. Khudin A.S.
https://doi.org/10.26583/npe.2025.1.04
UDC: 53.083.94/.087
The proposed solution for the production of new boron-containing radiator materials – composite coatings with neutron conversion material (10B isotope) – for ionization chambers electrodes is based on the technology of chemical and structural modification of the surface using heat-resistant oxide materials (silicon and boron oxides). The paper presents the results of the development of a neutron-sensitive radiator material based on an oxide micro-dimensional composite coating consisting of an intermediate adhesive layer of silicon dioxide (SiO2) and a neutron-sensitive functional layer of boric anhydride (B2O3). The technological basis consists of the sequential processes of thermal destruction of polyorganosiloxane of the PES-5 brand and pyrolytic decomposition of boric acid (H3BO3). Studies using infrared and fiber-optic interferometric spectroscopy have shown that during the formation of a silicon dioxide layer, an amorphous silicate of a linear chain structure with a developed surface is formed, which contributes to the subsequent formation of a functional boric anhydride layer. The specific neutron sensitivity of boron-containing radiator coatings was measured by alpha spectrometry. It was found that at a surface density of boric anhydride of 2,5 mg/cm2, the specific neutron sensitivity is of the order of 3⋅ 10–18 Coulomb/neutron. It is shown that the boron-containing radiator coating retains its integrity and nuclear physical properties during thermocyclic tests (4 cycles at 600°C). The boron-containing radiator coating is characterized by high adhesion properties to the metallic surface of the electrodes (grade 321 steel) of the ionization chamber. The composite coating is resistant to vibration when exposed to high-frequency (200 Hz) and low-frequency (6 – 35 Hz) vibration loads.
References
- Malyshev E.K., Zasadych Yu.B., Stabrovsky S.A. Gas-discharge detectors for monitoring nuclear reactors. Moscow, Energatomizdat Publ., 1991, 160 p. ISBN 5-283-03042-3 (in Russian).
- Baskov P.B., Marichev G.V., Sakharov V.V., Stepanov V.A. Nuclear optical converters for detecting strong neutron fields. Izvestiya vuzov. Yadernaya Energetika. 2021;4:122–132 (in Russian). DOI: https://doi.org/10.26583/npe.2021.4.11
- Sakharov V.V., Baskov P.B., Berikashvili V.Sh., Ivkina O.V., Kosov D.E., Mosyagina I.V., Frolov N.N., Sharipova M.A. Oxide nanolevel modification of the surface of inorganic materials. Rossijskij himicheskij zhurnal. 2012;1–2:36–43. URL: https://elibrary.ru/download/elibrary_18013627_10974709.pdf (accessed Nov.1, 2023) (in Russian).
- Sakharov V.V., Baskov P.B., Mosyagina I.V, Frolov N.N., Kurbatkin I.I., Muraveva T.I., Torskaya E.V., Ivkina O.V., Sharipova M. A. Chemical synthesis of neutron-detecting ultrathin optical materials. Izvestiya vuzov. Yadernaya Energetika. 2012;4:130–142. DOI: https://doi.org/10.26583/npe.2012.4.15 (in Russian).
- Baskov P.B., Mosyagina I.V., Sakharov V.V., Ivkina O.V., Khudin A.S., Kirichenko G.P. Small thorium fission chambers for recording fast neutrons in reactor installations. Atomic energy. 2018;125(1):33–38. DOI: https://doi.org/10.1007/s10512-018-0438-x
- Potapov S.P. On the use of stable boron isotopes. Atomnaya energiya. 1961;10(3):244–252. URL: https://elib.biblioatom.ru/text/atomnaya-energiya_t10-3_1961/p244/ (accessed Nov.1, 2023) (in Russian).
- Bolozdynya A.I. Experimental nuclear physics. Lecture No. 2. Interaction of charged particles with matter. MEPhI, 2017. URL: https://enpl.mephi.ru/download/lectures/lect_5.pdf (accessed Nov.29, 2023) (in Russian).
- Sakharov V.V., Mosyagina I.V., Baskov P.B., Stepanov V.A. Physico-material science combinatorics of film-fiberglass materials for radiation-luminescent detection of neutron fluxes. Voprosy radiacionnoj bezopasnosti. 2016;2:55–63. URL: https://elibrary.ru/download/elibrary_26723423_34666726.pdf (accessed Nov.29, 2023) (in Russian).
- Shurygina N.A., Glezer A.M., Blinova E.N. The role of structural parameters of nanocrystals in the mechanical behavior of amorphous nanocrystalline alloys. Nauchnye vedomosti. Seriya: Matematika. Fizika. 2012;23:206–214. URL: https://elibrary.ru/download/elibrary_21196140_42910592.pdf (accessed Nov.29, 2023) (in Russian).
- Sakharov V.V., Baskov P.B., Ivkina O.V., Mosyagina I.V., Frolov N.N., Khorozova O.D., Khudin A.S. Low-temperature consolidation in thermodecompositional nanosized amorphous layers of oxide zirconium and aluminum. Uprochnyayushchie tekhnologii i pokrytiya. 2016;6:43–48. URL: https://elibrary.ru/download/elibrary_26097972_13559243.pdf (accessed Nov.29, 2023) (in Russian).
- Sobolevsky M.V. Muzovskaya O.A. Popeleva G.S. Properties and applications of organosilicon products. Moscow, Chemistry Publ., 1975, 296 p. (in Russian).
- Iler R. Chemistry of silica Part 1. Moscow, Mir Publ., 1982, 416 p. (in Russian).
- Plyusnina I.I. Infrared spectra of minerals. Moscow. Moscow State University Publ., 1977, 174 p. (in Russian).
- Vlasov A.G., Florinskaya V.A. Venediktov A.A., Zubareva E.P., Kurtsinovskaya R.I., Morozov V.N., Smirnova E.V., Yakhkind A.K. Structure and physico-chemical properties of inorganic glasses. Leningrad. Chemistry Publ., 1974, 360 p. (in Russian).
- Chukin G.D. Surface chemistry and structure of dispersed silica. Moscow, Paladin Publ, Printa LLC, 2008, 172 p. URL: https://www.chem.msu.su/rus/books/chukin-2008/chukin-2008.pdf (accessed Nov.29, 2023) (in Russian).
- Matsuda A., Tohge N., Minami T. Preparation of B2O3-P2O5-SiO2 coating films by the sol-gel method. Journal of materials science. 1992;27:4189–4194. DOI: https://doi.org/10.1007/BF01105125
- Vlasov A.G., Florinskaya V.A., Venediktov A.A., Dutova K.P., Morozov V.N., Smirnova E.V. Infrared spectra of inorganic glasses and crystals. Leningrad, Chemistry Publ., 1972, 304 p. (in Russian).
- GOST 29075-91. Nuclear instrumentation systems for nuclear power plants. Moscow, IPK House of Standards Publ., 2004, 22 p. URL: https://ohranatruda.ru/upload/iblock/6dd/4294825607.pdf (accessed Nov.29, 2023) (in Russian).
neutron-sensitive materials ionization chamber boron radiator coatings thermal destruction
Link for citing the article: Baskov P.B., Salamakha B.S., Glazyuk Y.V., Namakshinas A.A., Bondarenko S.A., Mushin I.M., Khudin A.S. Boron-containing Radiator Coatings of Ionization Chambers of Neutron Flux Detection Sensors. Izvestiya vuzov. Yadernaya Energetika. 2025, no. 1, pp. 51-64; DOI: https://doi.org/10.26583/npe.2025.1.04 (in Russian).