Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Lithium-Containing Radiator Materials for Neutron Ionization Chambers

12/20/2024 2024 - #04 Global safety, reliability and diagnostics of nuclear power installations

Baskov P.B. Salamakha B.S. Glazyuk Y.V. Namakshinas A.A. Bondarenko S.A. Mushin I.M. Khudin A.S.

DOI: https://doi.org/10.26583/npe.2024.4.05

UDC: 53.083.94/.087; 621.039.531

The paper presents the results of material testing for the purpose of obtaining radiator material – composite coating with neutron convertion material – for ionization chambers (IC) which contain the 6Li isotope and convert neutron radiation to a flux of high-energy charged particles through the 6Li(n, α)3H nuclear reaction.

The proposed method for forming lithium-containing radiator material allows ensuring a high temperature resistance of up to 600°C and a mechanical strength at the expense of adhesion to the IC electrode material (grade 321 steel). The advantages of a lithium-containing radiator, compared to a boron radiator, are explained by the smaller cross-section of the 6Li-neutron interaction: the smaller efficiency of the «neutron → charged particle» conversion is made up for by a high power density and a prolonged free path of reaction products in the radiator material, which makes it possible to increase the surface density of 6Li atoms, while reducing the extent of «burnup» in neutron fields. The IC electrode radiator material consists of a two-layer composite coating comprising an adhesive silicate layer and a functional neutron-sensitive lithium fluoride layer. Measurements at an alpha spectrometric facility have shown that the coating has a high energy output (~ 2.8·10–3 MeV/neutron), which remains stable after four thermal cycles of up to 600°C. The coating is resistant to vibration when exposed to frequencies of 35 to 200 Hz. The paper presents the results of testing the IC mockup with a lithium-containing radiator material. When irradiated with a neutron flux of 6·103 cm–2·s–1, the IC mockup sensitivity value was about 10–15 A·s·cm2/neutron, which agrees with the calculated value.

References

  1. Baskov P.B., Marichev G.V., Sakharov V.V., Stepanov V.A. Nuclear optical converters for detecting strong neutron fields. Izvestiya vuzov. Yadernaya Energetika. 2021, no. 4, pp. 122 – 132. DOI: https://doi.org/10.26583/npe.2021.4.11 (in Russian).
  2. Sakharov V.V., Baskov P.B., Berikashvili V.Sh., Ivkina O.V., Kosov D.E., Mosyagina I.V., Frolov N.N., Sharipova M.A. Oxide nanolevel modification of the surface of inorganic materials. Rossijskij himicheskij zhurnal. 2012, no. 1-2, pp. 36 – 43. Available at:https://elibrary.ru/download/elibrary_18013627_10974709.pdf (accessed Nov. 1, 2023) (in Russian).
  3. Egorov A.V., Baskov P.B., Sakharov V.V., Mosyagina I.V. Uranium oxide radiator of the fission ionization chamber. Patent RF, No. 152036, 2015.Available at: https://elibrary.ru/download/elibrary_38370451_98101785.pdf (accessed Nov. 1, 2023) (in Russian).
  4. Sakharov V.V., Baskov P.B., Mosyagina I.V., Frolov N.N., Kurbatkin I.I., Muravyeva T.I., Torskaya E.V., Ivkina O.V., Sharipova M.A. Chemical synthesis of neutron-detecting ultrathin optical materials. Izvestiya vuzov. Yadernaya Energetika. 2012, no. 4, pp. 130 – 142. DOI: https://doi.org/10.26583/npe.2012.4.15 (in Russian).
  5. Baskov P.B., Mosyagina I.V., Sakharov V.V., Ivkina O.V., Khudin A.S., Kirichenko G.P. Small thorium fission chambers for recording fast neutrons in reactor installations. Atomic Energy. 2018, vol. 125, no. 1, pp. 33 – 38. DOI: https://doi.org/10.1007/s10512-018-0438-x
  6. Glazyuk Ya.V., Dmitriev A.B., Fedoseev V.A. High-temperature ionization fission chamber for control and protection systems of nuclear installations. Patent RF, No. 2630260, 2017. Available at: https://elibrary.ru/download/elibrary_38286699_38973367.pdf (accessed Nov. 1, 2023) (in Russian).
  7. Voytovetsky V.K., Tolmacheva N.S. Lithium-silicate scintillation glasses for detecting slow neutrons. Atomnaya energiya. 1959, no. 4, pp. 472 – 475. Available at: https://elib.biblioatom.ru/text/atomnaya-energiya_t6-4_1959/p472/ (accessed Nov. 5, 2023) (in Russian).
  8. Voytovetsky V.K., Tolmacheva N.S. Scintillation glasses with increased light output for neutron detection. Atomnaya energiya. 1961, no. 5, p. 504. Available at: https://elib.biblioatom.ru/text/atomnaya-energiya_t10-5_1961/p504/ (accessed Nov. 5, 2023) (in Russian).
  9. Shulgin B.V., Petrov V.L., Pustovarov V.A., Arbuzov V.I., Raikov D.V., Ivanovskikh K.V., Ishchenko A.V. Scintillation neutron detectors based on 6Li-silicate glass activated by cerium. Fizika tverdogo tela. 2005, no. 8, pp. 1364 – 1367. Available at: https://journals.ioffe.ru/articles/viewPDF/3910 (accessed Nov. 5, 2023) (in Russian).
  10. Osovizky A., Pritchard K., Ziegler J., Binkley E., Yehuda-Zada Y., Tsai P., Thompson A., Cooksey C., Siebein K., Hadad N., Jackson M., Hurlbut C., Ibberson R., Baltic G.M., Majkrzak C.F., Maliszewskyj N.C. 6LiF:ZnS(Ag) Mixture Optimization for a Highly Efficient Ultrathin Cold Neutron Detector. IEEE Transactions on Nuclear Science, 2018, v. 65, iss. 4, pp. 1025 – 1032. p. 9. DOI: https://doi.org/10.1109/TNS.2018.2809567
  11. Mosset J. B., Stoykov A., Greuter U., Hildebrandt M., Schlumpf N., Van Swygenhoven H. Evaluation of two thermal neutron detection units consisting of ZnS/6LiF scintillating layers with embedded WLS fibers read out with a SiPM. Nuclear Instruments and Methods. 2014, v. 764, pp. 299-304. DOI: https://doi.org/10.1016/j.nima.2014.07.060
  12. Allen V.D. Neutron registration. Moscow. Gosatomizdat Publ., 1962, 196 p. (in Russian).
  13. Subbotin V.I., Arnoldov M.N., Ivanovsky M.N., Mosin A.A., Tarbov A.A. Lithium. Moscow. IzdAT Publ., 1999, 263 p.ISBN 5-86656-088-7 (in Russian).
  14. Dmitriev A.B., Malyshev E.K. Neutron ionization chambers for reactor equipment. Moscow. Atomizdat Publ., 1975, 96 p. (in Russian).
  15. Bolozdynya A.I. Experimental nuclear physics. Lecture № 2. Interaction of charged particles with matter. Available at: https://enpl.mephi.ru/download/lectures/lect_5.pdf (accessed Nov. 29, 2023) (in Russian).
  16. Experimental nuclear physics. Volume 1. (Edit. E. Segre). Moscow. Foreign Literature Publ., 1955, 1840 p. (in Russian).
  17. Papko L.F., Kravchuk A.P. Physico-chemical methods of research of inorganic substances and materials. Minsk: BSTU Publ., 2013, 100 p. ISBN 978-983-530-273-6 (in Russian).
  18. Plyusnina I.I. Infrared spectra of minerals. Moscow. Moscow State University Publ., 1977, 174 p. (in Russian).
  19. Nakamoto K. Infrared spectra of inorganic and coordination compounds. Moscow. Mir Publ., 1966, 411 p. (in Russian).
  20. GOST 29075-91. Nuclear instrumentation systems for nuclear power plants. Moscow. IPK House of Standards Publ., 2004, 22 p. Available at: https://ohranatruda.ru/upload/iblock/6dd/4294825607.pdf (accessed Nov. 29, 2023) (in Russian).

neutron detectors ionization chamber radiator material functional neutron-sensitive lithium fluoride layer

Link for citing the article: Baskov P.B., Salamakha B.S., Glazyuk Y.V., Namakshinas A.A., Bondarenko S.A., Mushin I.M., Khudin A.S. Lithium-Containing Radiator Materials for Neutron Ionization Chambers. Izvestiya vuzov. Yadernaya Energetika. 2024, no. 4, pp. 56-68; DOI: https://doi.org/10.26583/npe.2024.4.05 (in Russian).