Development and verification of CFD model of furnace for carbothermal synthesis of mixed nitride uranium-plutonium fuel
12/05/2019 2019 - #04 Modelling processes at nuclear facilities
Shamsutdinov R.N. Pavlov S.V. Leshchenko A.Yu.
https://doi.org/10.26583/npe.2019.4.11
UDC: 621.039
The retort furnace for the carbothermal synthesis of mixed nitride uranium-plutonium (MNUP) fuel makes part of the Fabrication/Refabrication Module (FRM) at the Pilot Demonstration Energy Complex (PDEC). A CFD model of the furnace was developed with the SolidWorks Flow Simulation software to check the feasibility of thermophysical operating modes (heating and cooling rates, temperature of the product loaded into the furnace). The experimental data obtained from the furnace performance tests with the dummy fuel were used to verify the CFD model developed and to confirm its adequacy. The relative deviation of the calculated dummy fuel temperature from the experimental data in the process of isothermal annealing does not exceed 0.7%.
The dummy fuel temperature values obtained with the CFD model were used to justify the engineering solutions adopted for the MNUP carbothermal synthesis furnace. The CFD model can be used to define the furnace operation mode by selecting gas flow rates inside and outside the furnace retort, as well as the heaters temperature and the product heating and cooling rates.
References
- Spalart P.R., Venkatakrishnan V. On the role and challenges of CFD in the aerospace industry. The Aeronautical Journal, 2016, v. 120, iss. 1223, pp. 209-232.
- Raynal L., Augier F., Bazer-Bachi F., Haroun Y., Pereira da Fonte C. CFD applied to process development in the oil and gas industry. Oil&Gas Science and Technology, 2016, v. 71, iss. 3, pp. 1-24.
- Mizzi K., Kellett P., Demirel Y.K., Martin R., Turan O. HPC and CFD in the marine industry: past, present and future. Proc. of the IIIrd Intern. Conf. on Exascale Applications and Software. Edinburgh, 2015, pp. 92-97.
- Joshi J., Nayak A. Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment. Duxford, United Kingdom: Woodhead Publ., 888 p.
- Besagni G., Mereu R., Inzoli F. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant. Journal of Thermal Science, 2015, v. 24, iss. 1, pp. 58-66.
- Wang X., Li Y. A comprehensive 3D mathematical model of the electroslag remelting process. Metallurgical and Materials Transactions B, 2015, v. 46, iss. 4, pp. 1837-1849.
- Thompson J.S., Walton S., Hassan S., Rolland S.A., Sienz J. The use of CFD and multi-objective optimization techniques to customise an industrial pre-mixer. Structural and Multisiciplinary Optimization, 2017, v. 55, iss.6, pp. 2339–2351.
- IAEA-TECDOC-1379 Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems. 2002, pp. 1-50.
- Mahaffy J. Best Practice Guidelines for the Use of CFD in Nuclear Reactor Safety Applications. NEA-CSNI-R-2014-11, Nuclear Energy Agency of the OECD (NEA), 2015.
- Smith B.L. Assessment of CFD Codes for Nuclear Reactor Safety Problems. NEA-CSNI-R-2014-12, Nuclear Energy Agency of the OECD (NEA), 2015.
- Bestion D. Extension of CFD Codes Application to TwoPhase Flow Safety Problems NEA-CSNI-R-2014-13, Nuclear Energy Agency of the OECD (NEA), 2014.
- Bykov M.A., Kurnosov M.M. Raboty AO OKB «Gidropress» po realizacii investicionnogo proekta NIOKR «Vnedrenie CFD metodov dlja podderzhki proektirovanija i obosnovanija proektov». Zadachi, sostav i hod vypolnenija. Sbornik tezisov nauchno-tehnicheskogo seminara «Problema verifikacii i primenenija CFD kodov v atomnoj jenergetike». Nizhnij Novgorod. OAO «OKBM Afrikantova» Publ., 2018, pp. 5-16 (in Russian).
- Aljamovskij A.A., Sobachkin A.A., Odincov E.V., Haritonovich A.I., Ponomarev N.B. SolidWorks. Komp’juternoe modelirovanie v inzhenernoj praktike. SPb.: BHV-Petersburg, 2005, 800 p. (in Russian).
- Smirnov V.P., Pavlov S.V., Ivanov D.V., Shamsutdinov R.N., Inyutin N.V., Sidorenko D.M., Solopeko A.V., Sajfutdinov S.Yu., Davydov A.V., Chamovskih Yu.V., Sergeev N.G., Zozulya D.V. Carbothermal Facility for the Synthesis of Nitrides for Mixed Uranium-Plutonium Fuel Production. Atomnaya Energiya, 2019, v. 125, iss. 5, pp. 322-325 (in Russian).
- Sobachkin A., Dumnov G. Numerical Basis of CADEmbedded CFD. Dassault systems, 2014, pp. 1-19.
- Wilcox D.C. Turbulence Modeling for CFD. La Canada, California: DCW Publ., 1998, P.460.
- Chirkin V.S. Teplofizicheskie svojstva materialov jadernoj tehniki. Moscow. Atomizdat Publ., 1968, 485 p. (in Russian).
- Roache P.J. Fundamentals of Computational Fluid Dynamics. Albuquerque, New Mexico. Hermosa Publ., 1998, 648 p.
- Hirsch C. Numerical Computation of Internal and External Flows. Vol. 1. Chichester. John Wiley&Sons Ltd, 1991, 538 p.
- Patankar S.V. Numerical Heat Transfer and Fluid Flow. Washington. Hemisphere, 1980, 197 p.
- Saad Y. Iterative Methods for Sparse Linear Systems. Boston. PWS Publ., 1996, 184 p.
CFD model MNUP fuel SolidWorks Flow Simulation furnace carbothermal synthesis mathematical model grid model
Link for citing the article: Shamsutdinov R.N., Pavlov S.V., Leshchenko A.Yu. Development and verification of CFD model of furnace for carbothermal synthesis of mixed nitride uranium-plutonium fuel. Izvestiya vuzov. Yadernaya Energetika. 2019, no. 4, pp. 130-141; DOI: https://doi.org/10.26583/npe.2019.4.11 (in Russian).