Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Comparative Analysis of k-ω SST Model and Porous Approach for HTGR Core Section Calculation

12/10/2025 2025 - #04 Modelling processes at nuclear facilities

Chubarov M.A. Zakharov M.Y. Tikhomirov G.V.

DOI: https://doi.org/10.26583/npe.2025.4.13

UDC: 621.039.52.034.3; 532.546.2

This study presents a comparative analysis of two geometric representations of the flow domain within RANS modeling for a segment of the high-temperature gas-cooled reactor (HTGR) core: a realistic representation with explicit modeling of fuel spheres and a porous one based on averaging the medium’s properties. The simulations were carried out using the LOGOS software package with the k-ω SST turbulence model. The realistic representation captures local flow and heat-transfer effects, including recirculation zones, accelerations within inter-particle gaps, and temperature peaks reaching up to 1310 K. In contrast, the porous approximation provides a smoothed, averaged picture with significantly lower values: the maximum velocity does not exceed 0.5 m/s, and the maximum temperature is 727 K. The average helium velocity in the pebble bed is 76.4% lower, and both the outlet temperature and the pressure drop differ by about 9%, accounting for the pre-computed linear resistance coefficients. The realistic approach is recommended for the analysis of local thermal-hydraulic characteristics, which are critical for transient and accident simulations, whereas the porous approximation, due to its computational efficiency, is suitable for preliminary studies and integral assessments, provided that the model is properly parameterized.

References

  1. Sato H., Ohashi H., Nakagawa S., Tachibana Y., Kunitomi K. Safety design consideration for HTGR coupling with hydrogen production plant. Prog. Nucl. Energy. 2015; 82:46–52. DOI: https://doi.org/10.1016/j.pnucene.2014.07.032
  2. Fütterer M.A., Fu L., Sink C., Groot S., Pouchon M., Kim Y.W., Carré F., Tachibana Y. Status of the very high temperature reactor system. Prog. Nucl. Energy. 2014:77:266–281. DOI: https://doi.org/10.1016/j.pnucene.2014.01.013
  3. Ahmed F., Ara N., Deshpande V., Mollah A.S., Bhowmik P.K. CFD validation with optimized mesh using benchmarking data of pebble-bed high-temperature reactor. Prog. Nucl. Energy. 2021:134:103653. DOI: https://doi.org/10.1016/j.pnucene.2021.103653
  4. Almusafir R.S., Jasim A.A., Al-Dahhan M.H. Review of the Fluid Dynamics and Heat Transport Phenomena in Packed Pebble Bed Nuclear Reactors. Nucl. Sci. Eng. 2023:197(6):1001–1037. DOI: https://doi.org/10.1080/00295639.2022.2146993
  5. Wu C.Y., Feng Y.M., Chieng C.C., Liu C.C. Investigating the advantages and disadvantages of realistic approach and porous approach for closely packed pebbles in CFD simulation. Nucl. Eng. Des. 2010;240(5):1151–1159. DOI: https://doi.org/10.1016/j.nucengdes.2010.01.015
  6. Avramenko A.A., Dmitrenko N.P., Shevchuk I.V., Tyrinov A.I., Kovetskaya M.M. Heat transfer and fluid flow of helium coolant in a model of the core zone of a pebble-bed nuclear reactor. Nucl. Eng. Des. 2021;377:111148. DOI: https://doi.org/10.1016/j.nucengdes.2021.111148
  7. Becker S., Laurien E. Three-dimensional numerical simulation of flow and heat transport in high-temperature nuclear reactors. Nucl. Eng. Des. 2003;222(2–3):189–201. DOI: https://doi.org/10.1016/S0029-5493(03)00011-6
  8. Guo W., Ying A., Ni. M-J., Abdou M.A. Influence of 2D and 3D convection–diffusion flow on tritium permeation in helium cooled solid breeder blanket units. Fusion Eng. Des. 2006;81(8–14):1465–1470. DOI: https://doi.org/10.1016/j.fusengdes.2005.08.059
  9. Huning A.J., Chandrasekaran S., Garimella S. A review of recent advances in HTGR CFD and thermal fluid analysis. Nucl. Eng. Des. 2021;373:111013. DOI: https://doi.org/10.1016/j. fusengdes.2005.08.059
  10. Orlov A.I., Gabaraev B.A. Heavy liquid metal cooled fast reactors: peculiarities and development status of the major projects. Nucl. Energy Technol. 2023;9(1):1–18. DOI: https:// doi.org/10.3897/nucet.9.90993
  11. Bolshov L.A., Strizhov V.F., Mosunova N.A. Codes of new generation for safety justification of power units with a closed nuclear fuel cycle developed for the “PRORYV” project. Nucl. Energy Technol. 2020;6(3):203–214. DOI: https://doi.org/10.3897/nucet.6.54710
  12. Guo J., Wang Y., Zhang H., Cui M., Li F. Challenges and progress of uncertainty analysis for the pebble-bed high-temperature gas-cooled reactor. Prog. Nucl. Energy. 2021;138:103827. DOI: https://doi.org/10.1016/j.pnucene.2021.103827
  13. Berens A., Bostelmann F., Brown N.R. Temperature sensitivity of the equilibrium neutronics and accident analysis of the HTR-10. Prog. Nucl. Energy. 2025;181:105643. DOI: https://doi. org/10.1016/j.pnucene.2025.105643
  14. Blandford E., Brumback K., Fick L., Gerardi C., Haugh B., Hillstorm E., Johnson K., Peterson P.F., Rubio F., Sarikurt F.S., Sen, S., Zhao H., Zweibaum N. Kairos power thermal hydraulics research and development. Nucl. Eng. Des. 2020;364:110636. DOI: https://doi.org/10.1016/j.nucengdes.2020.110636
  15. Menter F.R., Kuntz M., Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model Turbulence heat and mass transfer. Turbulence, heat and mass transfer. 2003;4(1):625–632.
  16. Kozelkov A.S, Lashkin S.V., Efremov V.R., Volkov K.N., Tsibereva Yu.A., Tarasova N.V. An implicit algorithm of solving Navier–Stokes equations to simulate flows in anisotropic porous media. Comput. Fluids. 2018;160:164–174. DOI: https://doi.org/10.1016/j.compfluid.2017.10.029
  17. Ferng Y.M., Lin K.Y. CFD investigation of thermal-hydraulic characteristics in a PBR core using different contact treatments between pebbles. Ann. Nucl. Energy. 2014;72:156–165. DOI: https://doi.org/10.1016/j.anucene.2014.05.021
  18. Li H., Qiu S.m Zhang. Y., Su G., Tian W. Thermal hydraulic investigations with different fuel diameters of pebble bed water cooled reactor in CFD simulation. Ann. Nucl. Energy. 2012;42:135–147. DOI: https://doi.org/10.1016/j.anucene.2011.11.010
  19. Lu X., Jia W., Dong L., Li Y., Chen D., Chu G. Uncertainty in CFD simulation of reactors and approaches to improve the confidence of simulation results. Nucl. Eng. Des. 2025;436:113974. DOI: https://doi.org/10.1016/j.nucengdes.2025.113974
  20. Hassan M., Xiong J., Cheng X., Liu D. Uncertainty quantification (UQ) for CFD simulation of OECD-NEA cold leg mixing benchmark. Nucl. Eng. Des. 2022;393:111799. DOI: https://doi. org/10.1016/j.nucengdes.2022.111799
  21. Akgiray Ö., Saatçı A.M. A new look at filter backwash hydraulics. Water Supply. 2001;1(2):65–72. DOI: https://doi.org/10.2166/ws.2001.0022
  22. Hassan Y. A., Kang C. Pressure drop in a pebble bed reactor under high Reynolds number. Nuclear technology. 2012;180(2):159–173. DOI: https://doi.org/10.13182/NT12-A14631
  23. Li Y., Ji W. Effects of fluid–pebble interactions on mechanics in large-scale pebble-bed reactor cores. International Journal of Multiphase Flow. 2015;73:118–129. DOI: https://doi. org/10.1016/j.ijmultiphaseflow.2015.03.004

CFD ЛОГОС HTGR ВТГР пористость TRISO

Link for citing the article: Chubarov M.A., Zakharov M.Y., Tikhomirov G.V. Comparative Analysis of k-ω SST Model and Porous Approach for HTGR Core Section Calculation. Izvestiya vuzov. Yadernaya Energetika. 2025, no. 4, pp. 175-189; DOI: https://doi.org/10.26583/npe.2025.4.13 (in Russian).