A New Circuit Solution to Minimize the Consequences of the Failure of the Feedwater Cooldown Line of the BREST-OD-300
6/30/2025 2025 - #02 Modelling processes at nuclear facilities
Popov A.V. Kulakov E.N. Danilova D.R. Lisyanskii A.S. Svyatkin F.A. Kiriyenko S.O. Bubenshikov E.V. Pavlova I.V. Khodakovsky V.V. Chigarev V.N.
https://doi.org/10.26583/npe.2025.2.13
UDC: 621.311.25.621.039
During the design of the secondary circuit for a nuclear power plant with the BREST-OD-300, engineers and designers faced specific challenges related to the properties of the lead coolant. The key issue was its high crystallization temperature, which necessitated fundamentally new approaches to the thermal circuit design of the power unit. Particular attention was paid to developing the feedwater heating system, as its parameters and configuration directly affect the thermal balance and operational stability of the reactor plant. Throughout the design process, the configuration of this system underwent multiple revisions, reflecting the complexity of achieving optimal technical solutions while meeting stringent reliability and safety requirements. Every modification to the feedwater heating system design requires comprehensive analysis of its impact on all key components of the power unit, including both the reactor and turbine circuits. Engineers employed an Integral Computational Mathematical Model (ICMM) to evaluate system performance in normal and emergency operating modes, incorporating interconnections between all technological processes. This approach not only helps identify potential issues at early design stages but also optimizes equipment operating parameters. This approach achieves significant improvements in the power unit’s economic efficiency while simultaneously meeting all reliability and safety requirements. The research placed special emphasis on analyzing accident scenarios, particularly feedwater cooldown line failure. Engineers applied mathematical modeling to pinpoint critical parameters and design failure-mitigation solutions. These included upgrades to backup heating systems and optimization of control algorithms. Thus, this work highlights the necessity of employing modern modeling methods when developing innovative nuclear reactors. Such approaches enable advance development of technical solutions to ensure safe and efficient operation of these advanced power units.
References
- Parshikov I.A., Dolgov Yu. A., Larionov I.A., Shchekaturov A.M. Development of the integrated model of MBIR research reactor facility in the SiminTech simulation environment using the PRISET estimate code. Izvestiya vuzov. Yadernaya Energetika. 2016;4:133–145; DOI: https://doi.org/10.26583/npe.2016.4.13 (in Russian).
- Adamov E.O., Dzhalavyan A.V., Lopatkin A.V., Molokanov N.A., Muravyov E.V., Orlov V.V., Kal’akin S.G., Rachkov V.I., Troyanov V.M., Avrorin E.N., Ivanov V.B., Aleksakhin R.M. Conceptual framework of a strategy for the development of nuclear power in Russia to 2100. Atomic Energy. 2012;112(6):391–403. DOI: https://doi.org/10.1007/s10512-012-9574-x
- Glebov A.P. Features of the development of nuclear energy in Russia. Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants. 2022;1:40–51. URL: https://vant.ippe.ru/images/pdf/2022/issue2022-1-40-51.pdf (accessed Oct 06, 2024) (in Russian).
- Country Statistics: Russian Federation. IAEA: Power Reactor Information System. URL: https://pris.iaea.org/PRIS/home.aspx (accessed Oct. 06, 2024).
- Locatelly G., Manchini M., Todeschini N. Generation IV nuclear reactors: Current status and future prospects. Energy Policy. 2013;61:1503–1520. DOI: https://doi.org/10.1016/j.en-pol.2013.06.101
- Gen IV International Forum. Annual Report 2020. Available at: https://www.gen-4.org/ resources/annual-reports/2020-gif-annual-report (accessed Oct. 06, 2024).
- Adamov E.O., Grachev A.F., Zabudko L.M. Lachkanov E.V., Mochalov Yu. S., Beljaeva A.V., Kryukov F.N., Ivanov Yu. A., Skupov M.V., Marinenko E.E., Porollo S.I. Key Outcomes of Comprehensive Computational and Experimental Validation of Fuel Rods with Mixed Uranium-Plutonium Nitride Fuel for the BN-1200 and Brest Reactors. Atomic Energy. 2022;131(5):268–273. DOI: https://doi.org/10.1007/s10512-022-00877-1
- Grabezhnaya V.A., Mikheev A.S., Stein Yu.Yu., Semchenkov A.A. Numerical and experimental investigation of the model steam generator reactor facility BREST-OD-300. Izvestiya vuzov. Yadernaya Energetika. 2013;1:101–109 DOI: https://doi.org/10.26583/npe.2013.1.13 (in Russian).
- Beznosov A.V., Lvov A.V., Bokov P.A. Bokova T.A., Razin V.A. Experimental researches of dependences of lead coolant axial pumping on the lattice parameters of impellers profiles. Izvestiya vuzov. Yadernaya Energetika. 2017;1:138–146. DOI: https://doi.org/10.26583/npe.2017.1.13 (in Russian).
- Ageev V.S., Budanov Yu.P., Ioltukhovsky A.G., Leonteva-Smirnova M.V., Mitrofanova N.M., Tselishchev A.V., Shkabura I.A. Structural materials of the Russian fast reactor cores. Current situation and perspectives. Izvestiya vuzov. Yadernaya Energetika. 2009;2:210–218 URL: https://static.nuclear-power-engineering.ru/journals/2009/02.pdf (accessed Oct. 06, 2024) (in Russian).
- Belozerov V.I., Sitdikov E.R., Varseev E.V. Effect of impurities content on the heat transfer in the lead coolant. Izvestiya vuzov. Yadernaya Energetika. 2016;1:130–137. DOI: https://doi.org/10.26583/npe.2016.1.14 (in Russian).
- Bol’shov L.A., Mosunova N.A., Strizhov V.F., Shmidt O.V. Next generation design codes for a new technological platform for nuclear power. Atomic Energy. 2016;120(6):369–379. DOI: https://doi.org/10.1007/s10512-016-0145-4
- Kondurov E.P., Kulakov E.N., Popov A.V. Stepanov D.V., Prouhin A.V., Shchepetil’nikov I.D., Hodakovskij V.V. New challenges of using the steam power cycle in power plants based on lead-cooled fast reactor. Atomic Energy. 2024;136(1–2):32–38. DOI: https://doi.org/10.1007/s10512-024-01126-3
- Filin A.I., Tsikunov V.S., Popov S.V.,Nesterov Yu. V., Shvarts A.L., Kolbasnikov A.V., Shmukler B.I., Gombolevskii V.I., Radin Yu.A, Vakhrushin M.P. Development of the thermal schemes, equipment and operating regimes of the second circuit of a promising Nuclear Power Station. Thermal Engineering. 2001;48(6):27–31. URL: https://elibrary.ru/download/elibrary_27213049_17934548.pdf (accessed Oct. 06, 2024) (in Russian).
- Somova E.V., Kisina V.I., Shvarts A.L., Kolbasnikov A.V., Kanishchev V.P. The condensation of steam from steam-water mixture on water jets at high pressure. Thermal Engineering. 2009;56(1):69–77. DOI: https://doi.org/10.1134/S0040601509010121
- Nesterov Y.V., Makarova E.I., Lisyanskii A.S., Bal’va L.Ya., Prikhod’ko P.Yu. The thermal process diagram and equipment of the secondary coolant circuit of a nuclear power station unit based on the BREST-OD-300 reactor installation for subcritical steam conditions. Thermal Engineering. 2011;58(6):478–482. DOI: https://doi.org/10.1134/S0040601511060103
- Trofimov L.I. An experimental study of heat transfers with condensation of steam on water jets. Thermal Engineering. 2002;49(2):155–161. URL: https://www.elibrary.ru/item.asp?id=21931164 (accessed Oct. 06, 2024).
- Sukhorukov Y.G., Balunov B.F., Shcheglov A.A., Lemekhov V.V., Kogut V.A., Proukhin A.V., Svyatkin F.A., Yurchenko A.Yu., Matysh A.S., Borisov A.O., Shorin N.A., Grigor’ev K.A. Thermohydraulic test of a model of a high-pressure mixing heater. Thermal Engineering. 2021;68(12):936–942. DOI: https://doi.org/10.1134/S0040601521120090
- Kulakov E.N., Gaev V.D., Kazarov G.I., Sukhorukov Yu.G., Popov A.V. More efficient heat recovery from the condensate of reheaters at new and operating nuclear power plants (NPPs). Thermal Engineering. 2023;70(1):23–31. DOI: https://doi.org/10.1134/s0040601523010032
- Popov A.V., Kulakov E.N., Kruglikov P.A., Svyatkin F.A., Pavlov P.G., Tarasenko R.S., Denisova I.B., Proukhin A.V. Determining the optimum pressure differential across the control valve of a hydroturbine driven pump. Thermal Engineering. 2024;71(2):118–124. DOI: https:// doi.org/10.1134/S0040601524020071
- Shlemenzon K.T., Mihailov V.E., Homenok L.A. Innovation in the equipment of TPP and NPP – pumps with a hydroturbine drive organically integrated into the thermal circuit of the power unit. Safety & Reliability of Power Industry (=Nadezhnost’ I bezopasnost’ jenergetiki). 2014;1:37–40 (in Russian).
- Fedorovsky A.Yu., Kirienko S.O., Sipols A.A. Digital twins of nuclear power complexes. Atomic Energy. 2024;136(1–2):44–49. DOI: https://doi.org/10.1007/s10512-024-01128-1
NPP BREST-OD-300 Integral Compulation Mathematical Model Liquid Metal Coolant Lead Direct-Contact Feedwater Heater (DCFH) FHTP (Feed Hydroturbine Pump)
Link for citing the article: Popov A.V., Kulakov E.N., Danilova D.R., Lisyanskii A.S., Svyatkin F.A., Kiriyenko S.O., Bubenshikov E.V., Pavlova I.V., Khodakovsky V.V., Chigarev V.N. A New Circuit Solution to Minimize the Consequences of the Failure of the Feedwater Cooldown Line of the BREST-OD-300. Izvestiya vuzov. Yadernaya Energetika. 2025, no. 2, pp. 153-166; DOI: https://doi.org/10.26583/npe.2025.2.13 (in Russian).