Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Chemical Dosimetry with Boron Compounds in Mixed Neutron Fields on Horizontal Channel of VVR-c Reactor

3/18/2024 2024 - #01 Nuclear medicine and biology

Chernukha A.E. Solovyev A.N. Kuznetsov N.V. Koryakina E.V. Kochnov O.Yu. Vasilyev A.V. Koryakin S.N.

DOI: https://doi.org/10.26583/npe.2024.1.14

UDC: 53.044:519.856.3

The widespread application of research reactors provides multiple opportunities, including radiobiological studies within wide range of physical properties due to specific energy spectrum in each research channels. The article contains numerically estimated theoretical predictions and the experimentally obtained results for chemical dosimeter Fricke with addition of boron acid to perform the evaluation using given 10B concentration. The simulation used the general-purpose Monte-Carlo code to estimate the dose influence from each component. The experiments were taken on the horizontal experimental channel No. 1 of VVR-c reactor at Karpov Research and Development Institute for Physical Chemistry, Obninsk, Russia, which provided mixed gamma-neutron field together with fast and thermal neutron components. The research found the satisfactory correspondence between simulated and measured values, but also the requirements and necessity of further studies was demonstrated in order to adjust experimental dosimetry methods for mixed field evaluation. Generally, the obtained results are of practical use as multidisciplinary basis for multiple physical- and radiobiological-oriented studies in the mixed radiation field, and are an integral part in future opportunities aimed on the building medical-oriented facility for neutron and neutron-capture techniques on the VVR-c reactor.

References

  1. Soloviev A.N., Gulidov I.A., Mardynsky Yu.S., Ulyanenko S.E., Galkin V.N., Kaprin A.D. Modern trends in the world of particles. Summary results of PTCOG56 conference. Radiation Biology. Radioecology = Radiatsionnaya biologiya. Radioekologiya. 2017, vol. 57, no. 5, pp. 548 – 550. Available at: https://www.elibrary.ru/download/elibrary_30291010_82832162.pdf (accessed date Jul. 27, 2023) (in Russian).
  2. Ulyanenko S.E., Koryakin S.N., Uspenskiy S.A. Khabarov V.N. XV international congress on neutron-capture therapy: summarizing and looking to the future. Radiation Biology. Radioecology = Radiatsionnaya biologiya. Radioekologiya. 2013, vol. 53, no. 1, pp. 110 – 112 (in Russian). DOI: https://doi.org/10.7868/S0869803113010165
  3. Gulidov I., Koryakin S., Fatkhhudinov T., Gordon K. External beam fast neutron therapy: Russian clinical experience and prospects for further development. International Journal of Radiation Oncology Biology Physics. 2023, vol. 115, no. 4, pp. 821 – 827. DOI: https://doi.org/10.1016/j.ijrobp.2022.11.004
  4. Kaprin A.D., Ulyanenko S.E. Hadron therapy: key points. Medicina: celevye proekty. 2016, no. 23, pp. 56–59 (in Russian).
  5. Bushmanov A.Yu., Sheino I.N., Lipengolts A.A., Solovev A.N., Koryakin S.N. Prospects of proton therapy combined technologies in the treatment of cancer. Medical Radiology and Radiation Safety. 2019, vol. 64, no. 3, pp. 11 – 18. DOI: https://doi.org/10.12737/article_5cf237bf846b67.57514871 (in Russian).
  6. Koryakin S.N., Yadrovskaya V.A., Isaeva E.V., Beketov E.E., Ivanov P.L., Zelenetskii A.N., Khabarov V.N., Uspenskii S.A., Selyanin M.A., Ulyanenko S.E. Synthesis and use of hyaluronic acid-10B polymeric chelates for neutron-capture therapy. Pharmaceutical chemistry journal. 2013, vol. 47, no. 6, pp. 299 – 302. DOI: https://doi.org/10.1007/s11094-013-0947-9
  7. Sheino I.N., Izhevskij P.V., Lipengol’c A.A., Kulakov V.N., Vagner A.R., Suhih E.S., Varlachev V.A. Development of Binary Technologies for Radiation Therapy of Malignant Neoplasms: Status and Problems. Bulletin of Siberian Medicine. 2017, vol. 16, no. 3, pp. 192 – 209. DOI: https://doi.org/10.20538/1682-0363-2017-3-192-209 (in Russian).
  8. Koryakin S.N., Yadrovskaya V.A., Beketov E.E., Isaeva E.V., Ulyanenko S.E., Uspenskiy S.A., Khabarov V.N., Selyanin M.A. The study of hyaluronic acid compounds for neutron capture and photon activation therapies. Central European Journal of Biology. 2014, vol. 9, no. 10, pp. 922 – 930. DOI: https://doi.org/10.2478/s11535-014-0329-7
  9. Ulianenko S.E., Soloviev A.N., Lityaev V.M., Fedorov V.V., Koryakin S.N. Monte-carlo simulation of photon and proton capture therapy with gold compounds. Medical Radiology and Radiation Safety. 2016, vol. 61, no. 5, pp. 59 – 64 (in Russian)
  10. Barth R.F., Mi P., Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018. 38:35. DOI: https://doi.org/10.1186/s40880-018-0299-7
  11. Kurachenko Yu. A., Kazanskiy Yu. A., Matusevich E.S Neutron therapy beams performance criteria. Izvestia Wysshikh Uchebnykh Zawedeniy. Yadernaya Energetika. 2008, no. 1, pp. 139 – 149 (in Russian).
  12. Kreiner A.J., Baldo M., Bergueiro J.R., Cartelli D., Castell W., Thatar Vento V., Gomez Asoia J., Mercuri D., Padulo J., Suarez Sandin J.C., Erhardt J., Kesque J.M., Valda A.A., Debray M.E., Somacal H.R., Igarzabal M., Minsky D.M., Herrera M.S., Capoulat M.E., Gonzalez S.J., del Grosso M.F., Gagetti L., Suarez Anzorena M., Gun M., Carranza O. Accelerator-based BNCT. Applied Radiation and Isotopes. 2014, vol. 88, pp. 185 – 189. DOI: https://doi.org/10.1016/j.apradiso.2013.11.064
  13. Aleynik V., Bashkirtsev A., Kanygin V., Kasatov D., Kuznetsov A., Makarov A., Schudlo I., Sorokin I., Taskaev S., Tiunov M. Current progress and future prospects of the VITA based neutron source. Applied Radiation and Isotopes. 2014, vol. 88, pp. 177 – 179. DOI: https://doi.org/10.1016/j.apradiso.2013.11.132
  14. Farhooda B., Samadianb H., Ghorbanic M., Zakariaeed S.S., Knaupe C. Physical, dosimetric and clinical aspects and delivery systems in neutron capture therapy. Reports of practical oncology and radiotherapy. 2018, vol. 23, pp. 462 – 473. DOI: https://doi.org/10.1016/j.rpor.2018.07.002
  15. Mardynsky Y.S., Sysoyev A.S., Andreyev V.G., Gulidov I.A. Preliminary results of clinical application of reactor fast neutrons in radiation and combined therapy of patients with laryngeal carcinoma. Strahlenther Onkol. 1991, vol. 167, no. 3, pp. 169 – 171. PubMed: 1901671.
  16. Pikaev A.K. Dosimetry in radiochemistry. Moscow. Nauka publ., 1975. 312 p. (in Russian)
  17. Sokolova N.K. Chemical methods of dosimetry in radiobiology. M.: Atomizdat publ., 1972. 120 p. (in Russian).
  18. Sood A. The Monte Carlo Method and MCNP. A Brief Review of Our 40 Year History. Int. Topical Meeting on Industrial Radiation and Radioisotope Measurement Aplications Conference, Chicago IL – 2017 Available at: https://mcnp.lanl.gov/pdf_files/laur1726533.pdf (accessed date: Jul. 27, 2023).
  19. Chernukha A.E., Saburov V.O., Adarova A.I., Solovev A.N., Kizilova Yu.V., Koryakin S.N. Three-Dimensional Models and Complimentary Geometry for Dose Evaluation in NG-24MT Based Neutron Radiotherapy Cabinet. Izvestiya vuzov. Yadernaya Energetika. 2022, no. 3, pp. 158 – 167. DOI: https://doi.org/10.26583/npe.2022.3.14 (in Russian).
  20. Lychagin A.A., Ulyanenko L.N., Koryakin S.N., Troshina M.V., Ulyanenko S.E. Determination of the absorbed dose in radiation fields of neutron generator. Biomedical Engineering. 2019, vol. 52, no. 5, pp. 320–325. DOI: https://doi.org/10.1007/s10527-019-09839-7
  21. Bak M.A., Romanov Y.F. Measuring a flux of thermal neutrons by simultaneous activation of two different detectors. Atomic Energy. 1969, vol. 26, no. 6, pp. 636 – 638. DOI: https://doi.org/10.1007/BF01218788
  22. Potetnya V.I., Koryakina E.V., Troshina M.V., Koryakin S.N. Use of the chemical Fricke dosimeter and its modifications for dosimetry of gamma neutron radiation of a pulsed reactor. Nuclear Energy and Technology. 2021, vol. 7, no. 3, pp. 231 – 237. DOI: https://doi.org/10.3897/nucet.7.74149
  23. Gordon K.B., Saburov V.O., Koryakin S.N., Gulidov I.A., Fatkhudinov T.Kh., Arutyunyan I. V., Kaprin A.D., Solov’ev A.N. Calculation of the Biological Efficiency of the Proton Component from 14.8 MeV Neutron Irradiation in Computational Biology with Help of Video Cards. Bulletin of Experimental Biology and Medicine. 2022, vol. 173, pp. 281 – 285. https://doi.org/10.1007/s10517-022-05534-y
  24. Solovev A., Troshina M., Pikalov V., Saburov V., Chernukha A., Moiseev A., Koryakina E., Potetnya V., Koryakin S., Soldatov A., Kaprin A. In vitro modified microdosimetric kinetic model–based predictions for B14-150 cells survival in 450 MeV/u carbon ion beam with aluminum ridge filter for biologically optimized spread-out Bragg peak. Biomedical Physics & Engineering Express. 2022, vol. 8, no. 3, p. 035030. DOI: https://doi.org/10.1088/2057-1976/ac414f

simulation Monte-Carlo method chemical dosimetry reactor neutrons neutron-capture therapy

Link for citing the article: Chernukha A.E., Solovyev A.N., Kuznetsov N.V., Koryakina E.V., Kochnov O.Yu., Vasilyev A.V., Koryakin S.N. Chemical Dosimetry with Boron Compounds in Mixed Neutron Fields on Horizontal Channel of VVR-c Reactor. Izvestiya vuzov. Yadernaya Energetika. 2024, no. 1, pp. 170-181; DOI: https://doi.org/10.26583/npe.2024.1.14 (in Russian).