Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

A Computer Code for Optimizing the Neutronic Model Parameters Based on Results of Integral Experiments

6/22/2023 2023 - #02 Modelling processes at nuclear facilities

Andrianov A.A. Andrianova O.N. Korovin Yu.A. Kuptsov I.S. Spiridonova A.A.

DOI: https://doi.org/10.26583/npe.2023.2.12

UDC: 621.039.51

The paper describes in brief the functional capabilities of a computer code for optimizing the neutronic model parameters (neutron data, process parameters, and their covariance matrices) based on results of integral experiments using conditional nonlinear multi-parameter optimization algorithms (ONIX). The code’s application scope includes adjustment of constants, process parameters and their covariance matrices based on integral measurement results, formulation of requirements with respect to the neutron data uncertainties for achieving the target accuracies in calculation of the reactor functionals, and estimation of the reactor performance prediction accuracy (constant and process uncertainty), as well as the informativity and similarity metrics of integral experiments with respect to each other and in relation to the target facility. The paper also considers some examples of using the ONIX code to refine the neutronic models of nuclear facilities and fuel cycle systems based on results of reactor physics experiments.

References

  1. Andrianov A.A., Andrianova O.N., Golovko Yu.E., Kuptsov I.S. ONIX Code: Computer Program. Certificate RF: Computer Software, No. 2022611613, 2022. Available at: https://elibrary.ru/item.asp?id=47991503 (accessed Apr. 20, 2023) (in Russian).
  2. Conn A.R., Gould N.I.M., Toint P.L. Trust Region Methods (MOS-SIAM Series on Optimization). SIAM Publ., 2000; DOI: https://doi.org/10.1137/1.9780898719857 .
  3. Usachev L.N., Bobkov Yu.G. Perturbation Theory and Experiment Planning in the Problem of Nuclear Data for Reactors. Moscow. Atomizdat Publ., 1980, 88 p. (in Russian).
  4. Nikolaev M.N., Ryazanov B.G. The Neutron Cross-Sections Correction Based on Integral Experiment Results. VANT. Ser. Yadernye Konstanty. 1974, iss. 17, pp. 21-40 (in Russian).
  5. Van’kov A.A., Voropaev A.I. On the Issue of Neutron Cross-Sections Correction According to the Integral Experiment Results. VANT. Ser. Yadernye Konstanty. 1974, iss. 17, pp. 41-43 (in Russian).
  6. Manturov G.N. Methodological, Constant and Program Support of Neutron-Physical Calculations of Fast Reactors and Estimation of Calculation Prediction Uncertainties. Dr. Sci. (Engineering) Diss. Moscow. Kurchatov Institute NRC Publ., 2017, 202 p. (in Russian).
  7. Assessment of Existing Nuclear Data Adjustment Methodologies: Working Party on International Evaluation Co-Operation. Intermediate Report of the WPEC Subgroup 33. / Report / NEA/OECD. Paris, 2011, 152 p.
  8. Palmiotti G., Salvatores M., Aliberti G. A-Priori and A-Posteriori Covariance Data in Nuclear Cross Section Adjustment: Issues and Challenges. Nuclear Data Sheets. 2015, no. 123, pp. 41-50; DOI: https://doi.org/10.1016/j.nds.2014.12.008 .
  9. Klimov A.D. Method of Adjusting Nuclear Data on the Basis of Experimental Results. Atomic Energy. 2015, v. 117, iss. 4, pp. 278-288.
  10. Hoefer A., Buss O. Assessing and Improving Model Fitness in MOCABA Data Assimilation. Ann. Nucl. Energy. 2021, no. 162, p. 8; DOI: https://doi.org/10.1016/j.anucene.2021.108490 .
  11. Rochman D., Vasiliev A., Ferroukhi H., Zhu T., van der Marck S.C. Nuclear Data Uncertainty for Criticality-Safety: Monte-Carlo vs. Linear Perturbation. Ann. Nucl. Energy. 2016, v. 92, pp. 150-160; DOI: https://doi.org/10.1140/epjp/i2018-12303-8 .
  12. Siefman D., Hursin M., Rochman D., Pelloni S., Pautz A. Stochastic vs. Sensitivity-Based Integral Parameter and Nuclear Data Adjustments. Eur. Phys. J. Plus. 2018, no. 133, p. 429; DOI: https://doi.org/10.1140/epjp/i2018-12303-8 .
  13. Siefman D., Hursin M., Sjostrand H., Schnabel G., Rochman D., Pautz A. Data Assimilation of Post-Irradiation Examination Data for Fission Yields from GEF. EPJ Nucl. Sci. Technol. 2020, v. 6, no. 52, p. 17; DOI: https://doi.org/10.1051/epjn/2020015 .
  14. Castelluccio D.M., Grasso G., Lodi F., Peluso V.G., Mengoni A. Nuclear Data Target Accuracy Requirements for Advanced Reactors: The ALFRED Case. Ann. Nucl. Energy, 2021, v. 162, 108533; DOI: https://doi.org/10.1016/j.anucene.2021.108533 .
  15. Cabellos O. TAR Exercise: Preliminary Results WPEC Subgroup 46 (SG46) Meeting. Available at: https://www.oecd-nea.org/download/wpec/sg46/meetings/2021-12/documents/6__WPEC_SG46_7_Dec_2021_UQ_and_Preliminary_TAR_Results_OCabellos_UPM.pdf (accessed Apr. 20, 2023).
  16. Methods and Approaches to Provide Feedback from Nuclear and Covariance Data Adjustment for Improvement of Nuclear Data Files: Intermediate report. Nuclear Science NEA/OECD, NEA/NSC/R. Paris, 2016, 43 p.
  17. Andrianova O.N., Golovko Yu.E., Manturov G.N. Verification of the ROSFOND/ABBN Nuclear Data Based on the OECD/NEA Benchmark on Criticality Safety of MOX Fueled Systems. Izvestiya vuzov. Yadernaya Energetika, 2018, no. 3, pp. 160–170; DOI: https://doi.org/10.26583/npe.2018.3.14 (in Russian).
  18. Carmouz E.C., Huyghe J., Santamarina A. MOX Powders Calculation Improvement: Criticality Calculations in the Context of OECD NEA Benchmark. Proceedings of GLOBAL 2017. Seoul 2017, p. 8.
  19. International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP). Available at: https://www.oecd-nea.org/jcms/pl_20291/icsbep-handbook (accessed Apr. 20, 2023).
  20. Momotov V.N., Erin E.A., Volkov A.Yu., Kupriyanov V.N., Hamdeev M.I., Tikhonova D.E., Shadrin A.Yu., Khomyakov Yu.S. Radiochemical and Elemental Analysis of Mixed Uranium-Plutonium Fuel Irradiated in the BN-600 Reactor. Radiokhimiya. 2022, v. 64, no. 1, pp. 53-59; DOI: https://doi.org/10.1134/S1066362222010064 (in Russian).

neutronic performance benchmark model integral experiment data assimilation neutron constants process parameters

Link for citing the article: Andrianov A.A., Andrianova O.N., Korovin Yu.A., Kuptsov I.S., Spiridonova A.A. A Computer Code for Optimizing the Neutronic Model Parameters Based on Results of Integral Experiments. Izvestiya vuzov. Yadernaya Energetika. 2023, no. 2, pp. 148-161; DOI: https://doi.org/10.26583/npe.2023.2.12 (in Russian).