Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Lawson Criterion for Different Scenarios of Using D-3 He Fuel in Fusion Reactors

6/22/2023 2023 - #02 Modelling processes at nuclear facilities

Godes A.I. Shablov V.L.

DOI: https://doi.org/10.26583/npe.2023.2.11

UDC: 533.92

The paper is devoted to refining the Lawson criterion for three scenarios of using D-3He fuel in fusion reactors (fully catalyzed and non-catalysed D-D cycles and a D-3He cycle with 3He self-supply). To this end, a new parameterization of the D + 3He → p + 4He fusion reaction cross-section and astrophysical factor has been developed based on the effective radius approximation (Landau-Smorodinsky-Bethe approximation), which is a model-free theoretical approach to investigating near-threshold nuclear reactions, including resonant reactions. As part of this approximation, experimental data from studies in the NACRE II and EXFOR libraries, believed to provide the most reliable results to date, have been described within the accuracy declared in the studies in question in the energy range of 0 to 1000 keV, and the temperature dependence of the reaction rate averaged over the Maxwell distribution has been calculated. The results obtained are in good agreement with the calculations based on R-matrix theory and the NACRE II reaction rate data. For the fully catalyzed D-D cycle and the cycle with 3He self-supply, the Lawson criterion and the triple Lawson criterion have been calculated based on solving the equations of the stationary process kinetics in a fusion reactor for three fuel ions (D, 3He, and T) taking into account the potential for external supply of 3He and p & 4He impurity ions removed from the reaction zone. The parameters of the triple Lawson criterion found are as follows: nτT = 6.42⋅1016 cm–3k⋅s⋅keV (T = 54 keV) for the fully catalyzed D-D cycle, nτT = 1.03⋅1017 cm–3⋅s⋅keV (T = 45 keV) for the cycle with 3He self-supply, and nτT = 4.89⋅1016 cm–3⋅s⋅keV (T = 67 keV) for the non-catalyzed D-D cycle with equimolar D-3He fuel.


  1. Lawson J.D. Some Criteria for a Power Producing Thermonuclear Reactor. Proceedings of the Physical Society. Section B. 1957, v. 70 (1):6; DOI: https://doi.org/10.1088/0370-1301/70/1/303 .
  2. Wurzel S.E., Hsu S.C. Progress Toward Fusion Energy Breakeven and Gain as Measured Against the Lawson Criterion. Phys. Plasmas. 2022, v. 29, 062103; DOI: https://doi.org/10.1063/5.0083990 .
  3. Zhdanov S.K., Kurnaev V.A., Romanovsky M.K., Tsvetkov I.V. Fundamentals of Physical Processes in Plasma and Plasma Installations. Moscow. MEPhI Publ., 2017, 200 p. (in Russian).
  4. Artsimovich L.A. Controlled Thermonuclear Reactions. Gordon and Breach Science Publishers, NY, 1964, 405 p.
  5. Ryzhkov S.V., Chirkov A.Yu. Systems of Alternative Thermonuclear Power Engineering. Moscow. Fizmatlit Publ., 2017, 200 p. (in Russian).
  6. Khvesyuk V.I., Chirkov A.Yu. Energy Production in Ambipolar Reactors with D-T, D-3 He and D-D Fuel Cycles. Pis’ma v Zhurnal Eksperimental’noy i Teoreticheskoy Fiziki. 2000, v. 26, no. 21, pp.61-65; DOI: https://doi.org/10.1134/1.1329685 (in Russian).
  7. Shirokov Yu.M, Yudin N.P. Nuclear Physics. Moscow. Nauka Publ., 1980, 729 p. (in Russian).
  8. Basko M.M. Physical Foundations of the Inertial Thermonuclear Fusion. Moscow. ITEPh Publ., 2007, 147 p. (in Russian).
  9. Landau L.D., Lifshitz E.M. Course of Theoretical Physics. Vol. 3. Quantum Mechanics. Pergamon Press, Oxford, 1977, 671 p.
  10. Bethe A.H. Theory of the Effective Range in Nuclear Scattering. Physical Review. 1949, v. 76, no. 1, pp. 38-50; DOI: https://doi.org/10.1103/PhysRev.76.38 .
  11. Barit I.Ya., Sergeev V.A. Analysis of Resonance Reactions H3 (d,n)He4 and He3 (d,p)He4 in the Interaction Effective Range Approximation. Trudy FI AN SSSR. im. P.N. Lebedeva. 1969, v. 44, pp. 3-15 (in Russian).
  12. Karnakov B.M., Mur V.D., Pozdnyakov S.G., Popov V.S. Poles and Resonances in Low-Energy Scattering of Charged Particles. Yadernaya Fisika. 1991, v. 54, no. 2(8), pp. 400-403 (in Russian).
  13. Stott P.E. The Feasibility of Using D-3 He and D-D Fusion Fuels. Plasma Phys. Control. Fusion. 2005, v. 47, pp. 1305-1338; DOI: https://doi.org/10.1088/0741-3335/47/8/011 .
  14. Bosch H.S., Hale G.M. Fusion Cross-Sections and Thermal Reactivities. Nuclear Fusion. 1992, v. 32, no. 4, pp.620-622; DOI: https://doi.org/10.1088/0029-5515/32/4/I07 .
  15. Kozlov B.N. Thermonuclear Reaction Rates. Atomnaya Energiya. 1962, v. 12, iss. 3, pp. 238-240. Available at: http://elib.biblioatom.ru/text/atomnaya-energiya_t12-3_1962/go,50/ (accessed Mar. 01, 2023) (in Russian).
  16. Fowler W.A., Caughlan G.R., Zimmerman B.A. Thermonuclear Reaction Rates. Annual Reviews of Astronomy and Astrophysics. 1967, v. 5, pp. 525-570; DOI: https://doi.org/10.1146/annurev.aa.05.090167.002521 .
  17. Caughlan G.R., Fowler W.A. Thermonuclear Reaction Rates V. Atomic Data and Nuclear Data Tables. 1988, v. 40, pp. 283-334; DOI: https://doi.org/10.1016/0092-640X(88)90009-5 . Coupled-Channel Model for D + T → 5 He** → α + n Reaction and its Application for the Description of Low-Energy D-T and D-3 He Scattering. Izvestiya vuzov. Yadernaya Energetika. 2019, no.2, pp. 198-207; DOI: https://doi.org/10.26583/npe.2019.2.17 (in Russian).
  18. Peres A. Fusion Cross Sections and Thermonuclear Reaction Rates. Journal of Applied Physics.1979, v. 50, pp. 5569-5570; DOI: https://doi.org/10.1063/1.326748 .
  19. Belov A.A., Kalitkin N.N. Regularization of the double period method in processing experimental curves. Zhurnal Vychislitel’noy Matematiki i Matematicheskoy Fiziki. 2017, v. 57, no. 11, pp. 1171-1181; DOI: https://doi.org/10.7868/S0044466917110035 (in Russian).
  20. Moller W., Besenbaher F. A Note on the 3 He + D Nuclear-Reaction Cross Section. Nuclear Instruments and Methods. 1980, v. 168, pp. 111-114; DOI: https://doi.org/10.1016/B978-1-4832-2889-1.50020-7 .
  21. Krauss A., Becker H.W., Trautvetter H.P., Rolfs C., Brand K. Low-Energy Fusion Cross Sections of D+D and D+ 3 He Reactions. Nuclear Physics. 1987, v. A465, pp. 150-172; DOI: https://doi.org/10.1016/0375-9474(87)90302-2 .
  22. Geist W.H., Brune C.R., Karwowski H.J., Ludwig E.J., Veal K.D., Hale G.M. The 3 He(d,p)4 He Reaction at Low Energies. Physical Review. C. 1999, v. 60, pp. 054003-1-054003-9.
  23. Xua Y., Takahashia K., Gorielya S., Arnoulda M., Ohtac M., Utsunomiyad H. NACRE II: an Update of the NACRE Compilation of Charged-Particle-Induced Thermonuclear Reaction Rates for Nuclei with Mass Number A < 16. Astronomy & Astrophysics. 2013, v. 549, A106, 120 p.; DOI: https://doi.org/10.1051/0004-6361/201220537 .
  24. Wildermuth K., Tang J.C. A Unified Theory of the Nucleus. Vieweg Publ. Braunschweig, 1999, 389 p.
  25. Balashko Yu.G. Investigations of Elastic Scattering of Charged Particles on Some Light Nuclei at Low Energies. Trudy FI AN SSSR. im. P.N. Lebedeva. 1965, v. 33, pp. 66-126 (in Russian).
  26. Alper I.B., Godes A. I., Shablov V.L. New Parametrization for the 3 He(d,p) 4 He Fusion Reaction Rate and Refinement of the Lawson Criterion for D-3 He Thermonuclear Reactors. Journal of Physics: Conference Series. 2021, v. 2103, 012197; DOI: https://doi:10.1088/1742-6596/2103/1/012197 .
  27. Tiesinga E., Mohr P.J., David B. Newell D.B., Taylor B.N. CODATA Recommended Values of the Fundamental Physical Constants: 2018. Review of Modern Physics. 2021, v. 93, pp. 025010-1-025010-63; DOI: https://doi.org/10.1103/RevModPhys.93.025010 .
  28. Khvesyuk V.I., Chirkov A.Yu. Low-Radioactivity D-3 He Fusion Fuel Cycles with 3 He Production. Plasma Phys. Control. Fusion. 2002. v. 44, pp. 263-260; DOI: https://doi.org/10.1088/0741-3335/44/2/308 .

thermonuclear reactions effective radius approximation cross-section and astrophysical factor of D + 3He → p + 4He fusion reaction Lawson criterion for different D-3He fuel use scenarios

Link for citing the article: Godes A.I., Shablov V.L. Lawson Criterion for Different Scenarios of Using D-3 He Fuel in Fusion Reactors. Izvestiya vuzov. Yadernaya Energetika. 2023, no. 2, pp. 134-147; DOI: https://doi.org/10.26583/npe.2023.2.11 (in Russian).