Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Nuclear Data Uncertainty on Generation IV Fast Reactors Criticality Calculations Analysis Comparison

3/28/2023 2023 - #01 Modelling processes at nuclear facilities

Chereshkov D.G. Ternovykh M.Y. Tikhomirov G.V. Ryzhkov A.A.

DOI: https://doi.org/10.26583/npe.2023.1.14

UDC: 621.039.51.17

The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors on three fuel types (UO2, MOX, (U-Pu)N), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on the ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main uncertainty sources in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls into question the reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for a neutron transport simulation. The obtained results support the idea that lead- and sodium-cooled reactors have similar nuclear data sensitivity when the same computation tools, nuclear data libraries and fuel compositions are used. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety justification of lead-cooled reactors.

References

  1. Adamov E.O., Ivanov V.K., Mochalov Yu.S., Rachkov V.I., Shadrin A.Yu., Khomyakov Yu.S., Lachkanov E.V., Orlov A.I. On the Question of Different Approaches to the National Strategy for the Development of Nuclear Energy. Atomnaya Energiya. 2022, v. 132, no. 3, pp. 131-141; EDN WGBPZH. Available at: https://elibrary.ru/download/elibrary_49460180_33198678.pdf (accessed Nov. 21, 2022) (in Russian).
  2. Castelluccio D.M., Grasso G., Lodi F., Peluso V.G., Mengoni A. Nuclear Data Target Accuracy Requirements for Advanced Reactors: The ALFRED Case. Annals of Nuclear Energy. 2021, v. 162, 108533; DOI: https://doi.org/10.1016/j.anucene.2021.108533 .
  3. Romojaro P., Alvarez-Velarde F., Cabellos O., Garcia-Herranz N., Jimenez-Carrascosa A. On the importance of target accuracy assessments and data assimilation for the co-development of nuclear data and fast reactors: MYRRHA and ESFR. Annals of Nuclear Energy. 2021, v. 161, 108416; DOI: https://doi.org/10.1016/j.anucene.2021.108416 .
  4. Trivedi I., Hou J., Grasso G., Ivanov K., Franceschini F. Nuclear Data Uncertainty Quantification and Propagation for Safety Analysis of Lead-Cooled Fast Reactors. Science and Technology of Nuclear Installations. 2020, v. 2020, 3961095; DOI: https://doi.org/10.1155/2020/3961095 .
  5. Trottier A., Adams F.P., Levinsky A., Roubtsov D. Nuclear Data Sensitivity for Reactor Physics Parameters in a Lead-Cooled Reactor. Annals of Nuclear Energy. 2018, v. 120, pp. 333-347; DOI: https://doi.org/10.1016/j.anucene.2018.05.047 .
  6. Manturov G.N., Zabrodskaya S.V., Zuikov A.A., Levchenko Yu.V., Melega N.A., Mishin V.A., Panova D.V., Peregudov A.A., Peregudova O.O., Semenov M.Yu., Slyunyaev M.N., Tykleeva K.V. Status of Development of Nuclear Constant Databases for Calculations of Fast Reactors Based on ROSFOND and BNAB-RF Libraries. VANT. Ser. Yaderno-Reaktornye Konstanty. 2022, no. 3, pp. 19—26; EDN LEWHAI. Available at: https://www.elibrary.ru/item.asp?id=49499731 (accessed Nov. 21, 2022) (in Russian).
  7. Bostelmann F., Wiarda D., Arbanas G., Wieselquist W.A. Extension of SCALE/Sampler’s sensitivity analysis. Annals of Nuclear Energy. 2022, v. 165, 108641; DOI: https://doi.org/10.1016/j.anucene.2021.108641 .
  8. Romojaro P., Alvarez-Velarde F. Evolution of the Importance of Neutron-Induced Reactions Along the Cycle of an LFR. EPJ Web of Conferences. 2020, v. 239, 22010; DOI: https://doi.org/10.1051/epjconf/202023922010 .
  9. Romojaro P., Alvarez-Velarde F., Herranz N. SUMMON: A Sensitivity and Uncertainty Methodology for Monte Carlo Codes. Int. Conf. on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. Jeju, Korea: April 16-20, 2017. Available at: https://www.kns.org/files/int_paper/paper/MC2017_2017_2/P139S02-06RomojaroP.pdf (accessed Nov. 21, 2022).
  10. Romojaro P., Alvarez-Velarde F., Kodeli I., Stankovskiy A., Diez C.J., Cabellos O., Garcнa-Herranz N., Heyse J., Schillebeeckx P., Van den Eynde G., Zherovnik G. Nuclear Data Sensitivity and Uncertainty Analysis of Effective Neutron Multiplication Factor in Various MYRRHA Core Configurations. Annals of Nuclear Energy. 2017, v. 101, pp. 330-338; DOI: https://doi.org/doi:10.1016/j.anucene.2016.11.027 .
  11. Bostelmann F., Ilas G., Wieselquist W.A. Nuclear Data Sensitivity Study for the EBR-II Fast Reactor Benchmark Using SCALE with ENDF/B-VII.1 and ENDF/B-VIII.0. Journal of Nuclear Engineering. 2021, v. 2, no. 4, pp. 345-367; DOI: https://doi.org/10.3390/jne2040028 .
  12. Ma X., Huang Y., Qu W., Zhou F., Peng X., Kui H., Bin Z. Uncertainty Comparison Between ENDF/B-VIII.0 and ENDF/B-VII.1 for Fast Reactor BN-600 Using High-Precision Sampling Method. Annals of Nuclear Energy. 2021, v. 161, 108457; DOI: https://doi.org/10.1016/j.anucene.2021.108457 .
  13. Wan C., Huang Y., Zheng Y., Cao L., Wu H. Nuclear-Data Adjustment Based on the Continue-Energy Cross-Section Library for the Fast Reactor. Annals of Nuclear Energy. 2020, v. 143, 107453; DOI: https://doi.org/10.1016/j.anucene.2020.107453 .
  14. Griseri M., Fiorito L., Stankovskiy A., Van den Eynde G. Nuclear data uncertainty propagation on a sodium fast reactor. Nuclear Engineering and Design. 2017, v. 324, pp. 122-130; DOI: https://doi.org/10.1016/j.nucengdes.2017.08.018 .
  15. Vu T.M., Hartanto D. Study on the Sensitivity and Uncertainty of Nuclear Data to the Sodium-Cooled Linear Breed-and-Burn Fast Reactor Using SCALE 6.2 Code. Science and Technology of Nuclear Installations. 2021, v. 2021, 9997867; DOI: https://doi.org/10.1155/2021/9997867
  16. Zheng Y., Qiao L., Zhai Z., Du X., Xu Z. SARAX: A New Code for Fast Reactor Analysis Part II: Verification, Validation and Uncertainty Quantification. Nuclear Engineering and Design. 2018, v. 331, pp. 41-53; DOI: https://doi.org/10.1016/j.nucengdes.2018.02.033 .
  17. Tikhomirov G., Ternovykh M., Khomyakov Y., Suslov I. Independent Testing of New Generation Codes of the «Proryv» Project. Nuclear Engineering and Design. 2021, v. 384, 111497; DOI: https://doi.org/10.1016/j.nucengdes.2021.111497 .
  18. Ternovykh M.Y., Bogdanova E.V. Testing the Multigroup, Group and Subgroup Options of the CONSYST/ABBN-RF System on Criticality Calculations of Fast Reactor Models with MNUP Fuel. Journal of Physics: Conference Series. 2020, v. 1689, 012059; DOI: https://doi.org/10.1088/1742-6596/1689/1/012059 .
  19. Ternovykh M., Tikhomirov G., Khomyakov Yu., Suslov I. Determination of Equilibrium Fuel Composition for Fast Reactor in Closed Fuel Cycle. EPJ Web of Conferences. 2017, v. 153, 07034; DOI: https://doi.org/10.1051/epjconf/201715307034 .
  20. Andrianova O.N., Golovko Yu.E., Jerdev G.M., Zadornov D.V., Koscheev V.N., Manturov G.N., Peregudov A.A., Tsibulya A.M. Testing Covariance Matrices of Uncertainties in the BNAB Data System. Izvestia Vysshikh Uchebnykh Zawedeniy. Yadernaya Energetika. 2014, no. 2, pp. 109-117; DOI: https://doi.org/10.26583/npe.2014.2.12 (in Russian).

fast reactors Generation IV covariance matrices sensitivity coefficient uncertainty SCALE MNPU MOX

Link for citing the article: Chereshkov D.G., Ternovykh M.Y., Tikhomirov G.V., Ryzhkov A.A. Nuclear Data Uncertainty on Generation IV Fast Reactors Criticality Calculations Analysis Comparison. Izvestiya vuzov. Yadernaya Energetika. 2023, no. 1, pp. 162-174; DOI: https://doi.org/10.26583/npe.2023.1.14 (in Russian).