Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Calculated Ratios for Determining the Lithium Coolant Thermodynamic and Transport Properties

12/14/2022 2022 - #04 Thermal physics and thermal hydraulics

Chusov I.A. Babaeva Yu.A. Novikov G.E.

DOI: https://doi.org/10.26583/npe.2022.4.03

UDC: 621.039.5

The paper presents the results of analyzing the experimental data found in open publications for the period from 1950 to 2020. Calculated ratios are proposed to evaluate the key properties of lithium coolant, including density, dynamic viscosity coefficient, specific heat capacity, thermal conductivity coefficient, surface tension coefficient, electrical resistivity and sound velocity.

Values of errors in the proposed ratios and temperature ranges of their applicability are presented. The analysis uses experimental data published in 81 works.

References

  1. Bystrov P.I., Kagan D.N., Krechetova G.A., Shpil’rajn E.E. Liquid Metal Heat Carriers of Heat Pipes and Power Plants. Moscow. Nauka Publ., 1988, 263 p. (in Russian).
  2. Lyublinskij I.E., Evtihin V.A., Vertkov A.V. Application of Liquid Lithium in Thermonuclear Power Reactor Systems. Perspektivnye Materialy. 2005, no. 6, pp. 5-17 (in Russian).
  3. Nygren R.E., Rognlien T.D., Rensink M.E., Rensink M., Smolentsev S., Youssef M., Sawan M., Merrill B., Eberle C., Fogarty P., Nelson B., Sze D., Majeski R. A Fusion Reactor Design with a Liquid First Wall and Divertor. Fus. Eng. Des. 2004, v. 72, pp. 181-221; DOI: https://doi.org/10.1016/j.fusengdes.2004.07.007 .
  4. Subbotin V.I., Ivanovskij M.N., Arnol’dov M.N. Physical and Chemical Foundations of Application of Liquid Metal Heat Coolants. Moscow. Atomizdat Publ., 1970, 296 p. (in Russian).
  5. Gryaznov G.M., Evtihin V.A., Lyublinskij I.E. Materials Science of Liquid Metal Systems of Thermonuclear Reactors. Moscow. Energoatomizdat Publ., 1989, 240 p. (in Russian).
  6. Subbotin V.I., Arnol’dov M.N., Ivanovskij M.N., Mosin A.A., Tarbov A.A. Lithium. Moscow. IzdAT Publ.,1999, 262 p. (in Russian).
  7. Ivanovskij M.N., Sorokin V.P., Yagodkin I.V. Physical Foundations of Heat Pipes. Moscow. Atomizdat Publ., 1978, 256 p. (in Russian).
  8. Chusov I.A., Novikov G.E., Obysov N.A., Pronyaev V.G. Calculation Relations for Determination of Thermodynamic Properties of Lead Coolant. VANT. Ser. Fizika Yadernykh Reaktorov. 2019. iss. 2, pp. 83-91 (in Russian).
  9. Madsen K., Nielsen H.B., Tingleff O. Methods for Non;Linear Least Squares Problems. Technical University of Denmark. 2nd Edition, April 2004, 30 p.
  10. Hudson D. Statistics for Physicists. Moscow. Mir Publ., 1979, 293 p. (in Russian).
  11. Vandevender W.H. and Haskell K.H. The SLATEC Mathematical Subroutine Library. Signum Newsletter. 1982, v. 17, no. 3, pp. 16-21; DOI: https://doi.org/10.1145/1057594.1057595 .
  12. Handbook of Thermohydraulic Calculations in Nuclear Power. Vol. 3. Kirillov P.L. (Ed.). Moscow. Izdat Publ., 2014, 686 p. (in Russian).
  13. Handbook on the Properties of Materials for Advanced Reactor Technologies. Vol. 1. Poplavskiy V.M. (Ed.). Moscow. Izdat Publ., 2011, 392 p. (in Russian).
  14. Been S.A., Edwards H.S., Teeter C.E. and Calkins V.P. The Densities of Liquids at Elevated Temperatures. I. The Densities of Lead, Bismuth, Lead;Bismuth Eutectic and Lithium in the Range from Melting Point to 1000°C (1832 F). NEPA Report 1585. Oak Ridge, TN: Fairchild Engine and Airplane Corp. 1950, Sept. 7, 26 p.
  15. Miller R.R. Physical Properties of Liquid Metals. In: Liquid Metals Handbook, Lyon, R.N. (Ed.), 2nd Ed., Report NAVEXOS P-733. Atomic Energy Commission and Dept. of the Navy, Washington, USA, 1954, 257 p.
  16. Wilson J.R. The Structure of Liquid Metals and Alloys. J. Met. Rev. 1965, v. 10, pp. 381-590. Available at: http://www.gotrawama.eu/Fonderia/StructureLiquidMetalsAlloysWilson.pdf (accessed Jul. 22, 2022).
  17. Andrade E.N. da C. and Dobbs E.R. The Viscosities of Liquid Lithium, Rubidium and Caesium. Proc. Roy. Soc., Ser. A. 1952, v. 211, no. 1104, pp. 12-30; DOI: https://doi.org/10.1098/rspa.1952.0022 .
  18. Nikol’skij N.A., Kalakutskaya N.A., Pchelkin I.M., Klassen T.V., Vel’tishcheva V.A. Thermophysical Properties of Molten Metals. Teploenergetika. 1959, no. 2, pp. 92-95 (in Russian).
  19. Shpil’rajn E.E., SoldatenkoYu.A., Yakimovich K.A., Fomin V.A., Savchenko V.A., Belova A.M., Kagan D.N., Krajnova I.F. Experimental Investigation of Thermophysical and Electrophysical Properties of Liquid Alkali Metals at High Temperatures. Teplofizika Vysokikh Temperatur. 1965, v. 3, iss. 6, pp. 930-933 (in Russian).
  20. Shpil’rajn E.E., Yakimovich K.A. Density of Liquid Lithium, Rubidium and Caesium at High Temperatures. Teplofizika Vysokiлh Temperatur. 1967, v. 5, iss. 2, pp. 239-245 (in Russian).
  21. Vargaftik N.B. Handbook of Thermophysical Properties of Gases and Liquids. Moscow. Nauka Publ., 1972, 720 p. (in Russian).
  22. Tepper F., Zelenak J., Roehlich F. and May V. Thermophysical and Transport Properties of Liquid Metals. Report AFML TR-65-99. Wright-Patterson Air Force Base, Ohio, USA: Air Force Materials Lab., 1965, 112 p.
  23. Grishin V.K., Glazunov M.G., Arakelov A.G., Vol’dejt A.V., Makedonskaya G.S. Lithium Properties. Moscow. Metallurgizdat Publ., 1963, 116 p. (in Russian).
  24. Gol’tsova E.I. The Density of Lithium, Sodium and Potassium is up to 1500 – 1600!. Teplofizika Vysokikh Temperatur. 1966, v. 4, iss. 3, pp. 360-363 (in Russian).
  25. Christensen N.E., Fenrbacher B. Volume and Surface Photoemission from Tungsten. Calsulution of Band Structure and Emission Spectra. Phys. Rev. B. 1974, v. 10, no. 6, pp. 2349-2361; DOI: https://doi.org/10.1103/PhysRevB.10.2349 .
  26. Shpil’rajn E.E., Yakimovich K.A., Mozgovoj A.G., Tsitsarkin A.F. Experimental Study of the Density of Liquid Lithium at High Temperatures. Teplofizika Vysokikh Temperatur. 1984, v. 22, iss. 4, pp. 802-803 (in Russian).
  27. Stankus S.V., Hajrullin R.A. Density of natural lithium in the condensed state. Teplofizika Vysokikh Temperatur. 1999, v. 377, iss. 2, pp. 216-219 (in Russian).
  28. Yakimovich K.A., Mozgovoj A.G. Experimental Investigation of the Density and Surface Tension of Molten Lithium at Temperatures up to 1300 K. Teplofizika Vysokikh Temperatur. 2000, v. 38, iss. 4, pp. 680-682 (in Russian).
  29. Dickerson R., Gray G., Hayt J. Basic Laws of Chemistry. Vol. 1. Moscow. Mir Publ., 1982, 652 p. (in Russian).
  30. Mozgovoj A.G., Novikov I.I., Pokrasin M.A., Roshchupkin V.V., Teryaev V.V. The Pressure of Saturated Alkali Metal Vapors. Obzory po Teplofizicheskim Svojstvam Veschestv. 1985, no. 1 (51), pp. 3-108 (in Russian).
  31. Stankus S.V., Hajrulin R.A., Mozgovoj A.G. Thermal Properties of Promising Tritium Reproducing Materials and Coolants of a Liquid Metal Blanket of a Thermonuclear Reactor. Lithium. Perspektivnye Materialy. 2006, no. 1, pp. 48-51.
  32. Stankus S.V., Hajrulin R.A., Mozgovoj A.G. Experimental Study of Density and Thermal Expansion of Promising Materials and Coolants of Liquid Metal Systems of a Thermonuclear Reactor. Lithium. Teplofizika Vysokikh Temperatur. 2011, v. 49, iss. 2, pp. 196-200 (in Russian).
  33. Nuclear Reactors. II. Technique of Nuclear Reactors. Materials of the US Atomic Energy Commission. Moscow. Inostrannaya Literatura Publ., 1957, 782 p. (in Russian).
  34. Miller R.R. Physical Properties of Liquid Metals. Liquid Metals Handbook. R.N. Lyon (Ed.), 2nd ed. Report NAVEXOSP-733. Atomic Energy Commission and Dept. Of the Navy, Washington, USA, June 1952 (rev. 1954), 56 p.
  35. Solov’ev A.N. Viscosity of Molten Alkali Metals (Na, K, Li). Abstract Cand. Sci. (Engineering) Diss. Moscow. MIFI Publ., 1954, 25 p. (in Russuan).
  36. Novikov I.I., Solov’ev A.N., Habakhpasheva E.M., Gruzdev V.A., Pridancev A.I., Vasenina M.Ya. Heat Transfer and Thermophysical Properties of Molten Alkali Metals. Atomnaya Energiya. 1956, v. 1, iss. 4, pp. 92-106 (in Russian).
  37. Fomin V.A. Viscosity of Liquid Alkali Metals. Abstract Cand. Sci. (Engineering) Diss. Moscow. MIFI Publ., 1966, 20 p. (in Russian).
  38. Kalakutskaya N.A. Viscosity of Liquid Alkali Metals of Potassium, Sodium and Lithium at High Temperatures (up to 1500°C). Teplofizika Vysokikh Temperatur. 1968, v. 6, iss. 3, pp. 455-460 (in Russian).
  39. Ban N.T., Randall C.M. and Montgomery D.J. Effect of Isotopic Mass on Viscosity of Molten Lithium. Phys. Rev. 1962, v. 128, no. 1, pp. 6-11; DOI: https://doi.org/10.1103/PhysRev.128.6 .
  40. Rigney D.V., Kapelner S.M. and Cleary R.E. The Viscosity of Lithium. Pratt & Whitney Aircraft-CANEL Report TIM-849, 1965, 37 p.
  41. Achener P.Y. Viscosity of Liquid Sodium and Lithium. AGN-8181 Vol. 5. Aerojet-General Nucleonics Report. 1965.– 46 p.
  42. Achener P.Y. and Fisher D.L. Viscosity of Liquid Sodium and Lithium. Vol. 5 of Alkali Metals Evaluation Program. Rep. AGN-8191. Vol. 5. Aerojet-General Corp. May 1967. – 53 p.
  43. Ito Y., Minami K., Nagashima A. Viscosity of Liquid Lithium by an Oscillating-Cup Viscometer in the Temperature Range 464 – 923 K. International Journal of Thermophysics. 1989, v. 10, no. 1, pp. 173-182; DOI: https://doi.org/10.1007/BF00500717 .
  44. Shpil’rajn E.E., Yakimovich K.A., Totsckij E.E., Timrot D.P., Fomin V.A. Thermophysical Properties of Alkali Metals. Moscow. Nauka Publ., 1970, 487 p. (in Russian)
  45. Shpil’rajn E.E., Yakimovich K.A., Skovorod’ko S.N., Mozgovoj A.G. Density and Thermal Expansion of Liquid Alkali Metals. Obzory po Teplofizicheskim Svojstvam Veschestv. 1983, no. 6 (44), pp.1-92 (in Russian).
  46. Shpilrain E.E., Yakimovich K.A., Mozgovoi A.G. In: Handbook of Thermodynamic and Transport Properties of Alkali Metals. Ohse R. (Ed.), Oxford, UK. BlackwellSci.Publ., 1985, pp. 435-469.
  47. Kirillov P.L., Deniskina N.B. Thermophysical Properties of Liquid Metal Coolants (Reference Tables and Ratios). FEI-0291. Moscow. CNIIatominform Publ., 2000, 41 p. (in Russian).
  48. Handbook of Rare Metals. Plyushchev V.M. (Ed.). Moscow. Mir Publ., 1965, pp. 343-383 (in Russian).
  49. Landol P.E. and Sittig M. Lithium. In: Rare Metals Handbook, 2nd ed. New York. Reinhold, 1961, pp. 239-252.
  50. Metals Reference Book. 5th Edition. Colin J. Smithells (Ed.). Butterworth-Heinemann, 1976, 1582 p. ISBN: 9781483192529.
  51. Douglas T.B., Dever J.L., Epstein L.F. and Howland W.H. The Heat Capacity of Lithium from 250 to 900°C. The Heat of Fusion and the Triple Point. Thermodynamic Properties of the Solid and Liquid. Rep. 2879. National Bureau of Standards, Oct. 16, 1953, 74 p.
  52. Rudnev I.I., Lyashenko V.S., Abramovich M.D. Thermal Conductivity of Sodium and Lithium. Atomnaya Energiya. 1961, v. 11, iss. 3, pp. 230-232. Available at: http://elib.biblioatom.ru/text/atomnaya-energiya_t11-3_1961/go,22/ (accessed Jul. 22, 2022) (in Russian).
  53. Solov’ev A.N. Thermodynamic Similarity and Viscosity of Molten Metals. Atomnaya Energiya. 1957, v. 3, iss. 12, pp. 550-552. Available at: https://www.j-atomicenergy.ru/index.php/ae/article/view/256/249 (accessed Jul. 22, 2022) (in Russian).
  54. Redmond R.F., Lones J. Entalpies and Heat Capacities of Stainless Steel (316), Zirconium, Lithium at Elevated Temperature. Reactor Experimental Engineering Division. ORNL-1342, 1952, 24 p.
  55. Cabbage, A.M. Enthalpy, Mean Heat Capacity, and Absolute Heat Capacity of Solid and Liquid Lithium. Rep. NEPA-1370. Fairchild Engine and Airplane Corp. (AECD-3240), Mar. 31, 1950, 132 p.
  56. Bates A.G. and Smith D.J. Specific Heat and Enthalpy of Liquid Lithium in the Range of 500°C to 1000°C. Massachusetts Inst. Tech. (AEC Rep. K-729), Mar. 28, 1951, 31 p.
  57. Yaggee F.L., Untermyer S. The Relative Thermal Conductivities of Liquid Lithium, Sodium, and Eutectic NaK, and the Specific Heat of Liquid Lithium. ANL-4458, 1950, 27 p.
  58. Webber H.A., Goldstein D., Fellinger R.C. Determination of the Thermal Conductivity of Molten Lithium. Tran. ASME. 1955, v.. 77, pp. 97-102; DOI: https://doi.org/10.1115/1.4014245 .
  59. Cooke J.W. Experimenta1 Determination of the Thermal Conductivity of Liquid Lithium of Molten Lithium from 320 to 830°C. J. Chem. Phys. 1964, v. 40, iss. 7, p. 1902; DOI: https://doi.org/10.1063/1.1725421 .
  60. Novikov I.I., Gruzdev V.A., Kraev O.A., Odintsov A.A., Roshchupkin V.V. Experimental Study of Thermophysical Properties of Liquid Alkali Metals at High Temperatures. Teplofizika Vysokikh Temperatur. 1969, v. 7, iss. 1, pp. 71-74 (in Russian).
  61. Shpil’rajn E.E., Krajnova I.F. Experimental Determination of Thermal Conductivity of Liquid Lithium. Teplofizika Vysokikh Temperatur. 1970, v. 8, iss. 5, pp. 1103-1106 (in Russian).
  62. Agazhanov A., Abdullaev R.N., Samoshkin D.A. & Stankus S.V. Thermal Conductivity of Lithium, Sodium and Potassium in the Liquid State. Physics and Chemistry of Liquids. 2020, v. 58, no. 6, pp. 760-768; DOI: https://doi.org/10.1080/00319104.2019.1636377 .
  63. Taylor J.W. The Surface Energies of the Alkali Metals. Phys. Mag. 1955, v. 46, pp. 867-876; DOI: https://doi.org/10.1080/14786440808561239 .
  64. Hoffman H.W. and Keyes J.J. Jr. Studies in Heat Transfer and Fluid Mechanics Progress. Report QRNL/TM-1148, August 1965, 38 p.
  65. Achener P.Y. Surface Tension and Contact Angle of Lithium and Sodium. Report AGN-8191. V. 3. San Ramon, California. USA: Aerojet-General Corporation, 1969, 55 p.
  66. Bohdansky J., Schins H.J. The Surface Tension of the Alkali Metals. J. Inorg. Nucl. Chem. 1967, v.. 29, no. 9, p. 2173; DOI: https://doi.org/10.1016/0022-1902(67)80271-9 .
  67. Cooke J.W. Thermophysical Property Measurements of Alkali Liquid Metals. Report ORNL-3605, v. 1, 1964, pp. 66-87.
  68. Solov’ev A.N., Makarova O.P. Experimental Study of the Surface Tension of Molten Alkali Metals. Proc. of the Conf. «Thermophysical Properties Of Liquids and Gases at High Temperatures». Vol. 2. Moscow. Izdatelstvo Standartov Publ., 1969, p. 112 (in Russian).
  69. Solov’ev A.N., Makarova O.P., Kiriyanenko A.A. Experimental Study of the Surface Tension of Molten Alkali Metals. In Book: Investigation of Thermophysical Properties of Substances. Novosibirsk. Nauka Publ., 1967, p. 29 (in Russian).
  70. Timrot D.L., Reutov B.F., Arhipov A.P., Eremin N.M. Experimental Study of Lithium Surface Tension. Teplofizika Vysokikh Temperatur. 1990, v. 28, iss. 3, p. 601 (in Russian).
  71. Shebzukhov A.A., Osiko T.P., Kozhokova F.M., Mozgovoj A.G. Surface Tension of Liquid Alkali Metals and their Alloys. Obzory po Teplofizicheskim Svojstvam Veschestv. 1981, no. 5, pp. 1-141 (in Russian).
  72. Alchagirov B.B., Lazarev V.B., Hokonov H.B. The Work of the Electron Output of Alkali Metals and Alloys with their Participation. Obzory po Teplofizicheskim Svojstvam Veschestv. 1989, no. 5, pp. 76-147 (in Russian).
  73. Semenchenko V.K. Surface Phenomena in Metals and Alloys. Moscow. Metallurgiya Publ., 1957, 491 p. (in Russian).
  74. Freedman J.F. and Robertson W.D. Electrical Resistivity of Liquid Sodium, Liquid Lithium and Dilute Liquid Sodium Solutions. J. Chem. Phys. 1961, v. 34 (3), pp. 769-780; DOI: https://doi.org/10.1063/1.1731673 .
  75. Kapelner S.M. Samuel M. The Electrical Resistivity of Lithium and Sodium;Potassium Alloy. Pratt & Whitney Aircraft Div. United Aircraft Corp., Middeltown, 1961, 33 p.
  76. Vel’tishchev N.A. ENIN Report. 1962, no. 32, 56 p. (in Russian).
  77. Solov’ev A.N. Experimental Determination of Electrical Conductivity of Liquid Sodium, Potassium and Lithium. Prikladnaya Mekhanira i Tekhnicheskaya Fizika. 1963, no. 1, pp. 158-160 (in Russian).
  78. Semyachkin B.E., Solov’ev A.N. Experimental Determination of the Electrical Resistance of Liquid Alkali Metals up to 1000°С. Prikladnaya Mekhanira i Tekhnicheskaya Fizika. 1964, no. 2, p. 176 (in Russian).
  79. Roehlich F. and Tepper F. Electrical and Thermal Conductance of Alkali Metals at Elevated Temperatures. Electrochemical Technology. 1965, v. 3, no. 9, pp. 234-239.
  80. Rigney D.V., Kapelner S.M., Cleary R.E. The Electrical Resistivity of Lithium and Columbium;1 wt% Zirconium Alloy to 1430°C. USAEC Report TIM-849. Pratt-Whitney Aircraft-Canal. Division of United Aircraft Corp. September 1965, 98 p.
  81. Faber T.E. The Resistivity of Dilute Solutions of Magnesium in Lithium in the Liquid and Solid States. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1967, v. 15, ser. 8, pp. 1-8; DOI: https://doi.org/10.1080/14786436708230346 .
  82. Arnol’dov M.N., Ivanovskij M.N., Subbotin V.I., Shmatko B.A. The Effect of Dissociating and Thermally Strong Gas Impurities on the Electrical Resistance of Alkali Metals. Teplofizika Vysokikh Temperatur. 1967, v. 5, iss. 5, pp. 812-816 (in Russian).
  83. Chirkin V.S. Thermophysical Properties of Nuclear Engineering Materials. Handbook. Moscow. Atomizdat Publ., 1968, 484 p. (in Russian)
  84. Shpil’rajn E.E., Savchenko V.A. Experimental Study of the Electrical Conductivity of Lithium and Caesium in the Condensed Phase at Temperatures up to 1200 K. Teplofizika Vysokikh Temperatur. 1968, v. 6, iss. 2, pp. 254-260 (in Russian).
  85. Ioannides P., Nguyen V.T., Enderby J.E. Measurement of the Absolute Thermoelectric Power of Liquid Conductors Enclosed in Metallic Tubes. Journal of Physics E: Scientific Instruments. 1975, v. 8, no. 4, pp. 315-316; DOI: https://doi.org/10.1088/0022-3735/8/4/023 .
  86. Creffield G.K., Down M.G. and Pulham R.J. Electrical Resistivity of Liquid and Solid Lithium. Journal of the Chemical Society, Dalton Transactions. 1974, iss. 21, pp. 2325-2329; DOI: https://doi.org/10.1039/dt9740002325 .
  87. Guntherodt H.J., Kunzi H.U., Muller U. and Evans R. Hall Coefficient and Electrical Resistivity of Liquid Lithium. Physics Letters. 1975, v. 54A, no. 2, pp. 155-156; https://doi.org/10.1016/0375-9601(75)90846-4
  88. Novikov I.I., TrelinYu.S., Tsyganova T.A. Experimental Data on the Speed of Sound in Lithium up to 1100 K. Teplofizika Vysokikh Temperatur. 1969, v. 7, iss. 6, pp. 1220-1221 (in Russian).
  89. Novikov I.I., Roshchupkin V.V., Trelin Yu. S., Tsyganova T.A., Mozgovoj A.G. The Speed of Sound in Liquid Alkali Metals. Obzory po Teplofizicheskim Svojstvam Veschestv. 1981, no. 6 (32), pp. 65-99 (in Russian).
  90. Zinov’ev V.E. Thermophysical Properties of Metals at High Temperatures. Handbook. Moscow. Metallurgiya Publ., 1989, 384 p. (in Russian).

lithium coolant density heat capacity thermal conductivity dynamic viscosity surface tension electrical resistivity sound velocity thermodynamic properties transport properties

Link for citing the article: Chusov I.A., Babaeva Yu.A., Novikov G.E. Calculated Ratios for Determining the Lithium Coolant Thermodynamic and Transport Properties. Izvestiya vuzov. Yadernaya Energetika. 2022, no. 4, pp. 28-45; DOI: https://doi.org/10.26583/npe.2022.4.03 (in Russian).