Computational Simulation of Minor Actinide Burning in a BN-600 Reactor with Fuel without Uranium and Plutonium
9/23/2022 2022 - #03 Modelling processes at nuclear facilities
Korobeynikov V.V. Kolesov V.V. Ignatiev I.A.
https://doi.org/10.26583/npe.2022.3.12
UDC: 621.039.5
The paper presents the results of studies on the burning of minor actinides (MA) extracted from SNF of thermal reactors in a BN-600 reactor, which uses the complete set of MAs instead of traditional nuclear fuel types: uranium and/or plutonium. The advantages of such approach to MA burning are that long-lived waste is disposed of and energy is produced that can be used, e.g., to generate electricity. Besides, where, e.g., a reactor with uranium or MOX fuel is used for transmutation, apart from burning «foreign» minor actinides, it will additionally generate «its own» MAs. Studies have shown that such reactor can be efficient only if based on fast neutrons, which is due to specific properties of the MA neutron capture and fission cross-sections as compared with traditional fuel nuclides. The calculation results have shown rather a high rate of MA transmutation and burning in a reactor fueled with minor actinides.
References
- Salvatores M., Slessarev I., Uematsu M. A Global Physics Approach to Transmutation of Radioactive Nuclei. Nuclear Science and Engineering. 1994, v. 116, pp. 1-18; DOI: https://doi.org/10.13182/NSE94-A21476 .
- Bergelson B., Gerasimov A., Zaritskaya T., Kiselev G., Volovik A. Decay Heat Power and Radiotoxicity of Spent Uranium, Plutonium and Thorium Fuel at Long-Term Storage. Proc. of the XVIII-th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) China, Beijing, August 7-12, 2005.
- Japan Atomic Energy Agency – Nuclear Data Center. Japanese Standard Library for Fast Breeder Reactors, Thermal Reactors, Fusion Neutronics and Shielding Calculations, and Other Applications (JENDL-4.0). JAEA-NDC, 2010. Available at: https:// wwwndc.jaea.go.jp/jendl/j40/j40.html (accessed Apr. 04, 2022).
- OECD NEA. French R&D on the Partitioning and Transmutation of Long-Lived Radionuclides: An International Peer Review of the 2005 CEA Report. Papers: OECD Publishing, 2006.
- Oak Ridge National Laboratory. Preliminary Multicycle Transuranic Actinide Partitioning-Transmutation Studies. 2007. ORNL/TM-2007/24.
- Takaki Naoyuki. Neutronic Potential of Water Cooled Reactor with Actinide Closed Fuel Cycle. Progress in Nuclear Energy. 2000, v. 37, pp. 1-4; DOI: https://doi.org/10.1016/S0149-1970(00)00050-0 .
- Kloosterman J.L. Multiple Recycling of Plutonium in Advanced PWRs. Netherlands Energy Research Foundation (ECN), 1998.
- Youinou G. Plutonium Multirecycling in Standard PWRs Loaded with Evolutionary Fuels. Nuclear Science and Engineering: the Journal of the American Nuclear Society. 2005, v. 151. DOI: https://doi.org/10.13182/NSE05-A2526 .
- Atomic Energy of Canada Limited (AECL). Scenarios for the Transmutation of Actinides in CANDU Reactors: Company Wide. Ontario: AECL, 2010. CW-123700-CONF-010.
- Gulevich A.V., Eliseev V.A., Klinov D.A., Korobeynikova L.V., Kryachko M.V., Pershukov V.A., Troyanov V.M. The Possibility of Burning Americium in Fast Reactors. Atomnaya Energiya. 2020, v. 128, pp. 82-87.Available at: https://www.j-atomicenergy.ru/index.php/ae/article/view/3150 (accessed Apr. 04, 2022) (in Russian).
- Korobeynikov V.V., Kolesov V.V., Karazhelevskaya Yu.E., Terekhova A.M. Studies of the Possibility of Burning and Transmutation of Am-241 in a Reactor with Americium Fuel. Izvestiya Vuzov. Yadernaya Energetika. 2019, no. 2, pp. 153-163; DOI: https://doi.org/10.26583/npe.2019.2.13 (in Russian).
- Korobeynikov V.V., Kolesov V.V., Karazhelevskaya Yu.E., Terekhova A.M. Investigation of the Possibility of Burning Minor Actinides in a Fast Reactor with Metallic Fuel Based only on Minor Actinides. VANT. Ser. Yadernye Konstanty. 2020, iss. 1, pp. 59-68; DOI: https://doi.org/10.55176/2414-1038-2020-1-59-68 (in Russian).
- Ayodeji B. Alajo et al. Utilization of Transuranics as Fuel Component in VHTR Systems: The Back-end Considerations. Proc. Global 2009, Paris, France, 6-11, September 2009.
- Technical Features to Enhance Proliferation Resistance of Nuclear Energy Systems. IAEA, Vienna, 2010. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1464_web.pdf (accessed Apr. 04, 2022).
- IAEA Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, Safety Guide No TS-G-1.1. IAEA, Vienna, 2008. Available at: https://www-pub.iaea.org/mtcd/publications/pdf/ pub1325_web.pdf (accessed Apr. 04, 2022).
- Kosyakin D.A., Korobeynikov V.V., Stogov V.Yu. Investigation of the Dependence of the Am-241 Transmutation Efficiency on the Energy Structure of the Neutron Flux Density. IPPE Preprint-3294. Obninsk. IPPE JSCPubl., 2021, 38 p. (in Russian).
- Szieberth M., Halasz M., Reiss T., Feher S. Fuel Cycle Studies on minor actinide burning in gas cooled fast reactors. Proc. of the XII-th Information Exchange Meeting «Actinide and Fission Product Partitioning and Transmutation». Prague, Czech Repubic, 24-27 September 2012.
- BN-600 MOX Core Benchmark Analysis Results from Phases 4 and 6 of a Coordinated Research Project on Updated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects. IAEA-TECDOC-1700. Vienna. IAEA, 2013.
- Leppanen Jaakko. PSG2/SERPENT – A Continious Energy Monte-Carlo Reactor Physics Burnup Calculation Code. Helsinki. VTT Technical Research Centre of Finland, 2015. Available at: URL:http://montecarlo.vtt.fi/download/Serpent_manual.pdf (accessed Apr. 04, 2022).
- X-5 Monte Carlo Team. MCNP – A General Monte Carlo N-Particle Transport Code, Ver. 5, Vol. II: User’s Guide, Appendix B. April 2003, B-2. Available at: https://mcnp.lanl.gov/pdf_files/la-ur-03-1987.pdf (accessed Apr. 04, 2022).
- Santamarina A., Bernard D., Blaise P. et. al. The JEFF-3.1.1 Nuclear Data Library JEFF Report 22. Validation Results from JEF-2.2 to JEFF-3.1.1. ISBN 978-92-64-99074-6, OECD, 2009.
transmutation, minor actinides Am Np Cm burning minor actinides fast neutron nuclear reactor neutron spectrum plutonium nuclear fuel SNF SNF storage biological hazard radiotoxicity
Link for citing the article: Korobeynikov V.V., Kolesov V.V., Ignatiev I.A. Computational Simulation of Minor Actinide Burning in a BN-600 Reactor with Fuel without Uranium and Plutonium. Izvestiya vuzov. Yadernaya Energetika. 2022, no. 3, pp. 134-145; DOI: https://doi.org/10.26583/npe.2022.3.12 (in Russian).