Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Computational Analysis of the Power Conversion Loop of a Nuclear Power Plant Unit with the Closed S-CO2 Brayton Cycle

9/23/2022 2022 - #03 Nuclear power plants

Leskin S.T. Slobodchuk V.I. Shelegov A.S.

DOI: https://doi.org/10.26583/npe.2022.3.02

UDC: 621.039.526:621.1.018.2

The paper presents a computational-theoretical analysis and preliminary optimization of the Brayton cycle using supercritical carbon dioxide (S-CO2). The closed S-CO2 Brayton cycle can be considered as a working cycle at nuclear power plants with advanced reactor facilities. The authors consider various working media that can be used in the Brayton cycle. It is shown that supercritical CO2 has an advantage over other working fluids.

The efficiency of this cycle is evaluated as applied to reactor plants with a liquid metal coolant. In addition, an analysis is made of the influence of the defining characteristics on the efficiency of the cycle, such as the pressure and temperature at the compressor inlet, the pressure at the compressor inlet and the compression ratio, the pressure and temperature at the turbine inlet, as well as the proportion of the working fluid going to the cooler. The main operating parameters of the Brayton cycle are also selected. In conclusion, the authors outline the tasks for further research within the framework of this subject.


  1. Bender M., Carlsmith R.S., Delene J.G., Gall W.R., Goldman A.E., Holcomb R.S., Hoskins R.E., Lackey M.E., Lundin M.I.,Myers M.L., Robertson R.C., Samuels G., Terry W., Zapp F.C. Gas-Cooled Fast Reactor Concepts. USAEC Report ORNL-3642, Oak Ridge National Laboratory, 1964, 236 p.
  2. Feher E.G. The Supercritical Thermodynamic Power Cycle. Energy Conversion. 1968, v. 8, no. 2, pp. 85-90; DOI: https://doi.org/10.1016/0013-7480(68)90105-8 .
  3. Lewis J., Clementoni E. and Cox T. Effect of Compressor Inlet Temperature on Cycle Performance for a Supercritical Carbon Dioxide Brayton Cycle. Proc. of the VI-th International Supercritical CO2 Power Cycles Symposium. Pittsburgh, Pennsylvania, March 27-29, 2018. DOI: https://doi.org/10.1115/GT2018-75182 .
  4. Altunin V.V. Thermophysical Properties of Carbon Dioxide. Moscow. Izdatel’stvo Standartov Publ., 1975, 553 p. (in Russian).
  5. Angelino G. Carbon Dioxide Condensation Cycles for Power Production. Journal of Engineering for Power. 1968, v. 90, no. 3, pp. 287-295; DOI: https://doi.org/10.1115/1.3609190 .
  6. Angelino G. Real Gas Effects in Carbon Dioxide Cycles. ASME Paper no. 69-GT- 102, 1969, 12 p.; DOI: https://doi.org/10.1115/69-GT-102 .
  7. Gokhshtein D.P., Verheweker G.P. Application of CO2 as a Coolant and Working Fluid at Nuclear Power Plants. Atomnaya Energiya. 1969, v. 26, no.4, pp. 378-380. Available at: http://elib.biblioatom.ru/text/atomnaya-energiya_t26-4_1969/go,64/ (accessed Apr. 04, 2022) (in Russian).
  8. Dostal V., Driscoll M.J., Hejzlar P. A Supercritical Carbon Dioxide for Next Generation Nuclear Reactors. MIT-ANP-TR-100, 2004, 326 p.
  9. Rassokhin N.G. Steam Generating Units of Nuclear Power Plants. Moscow. Energoatomizdat Publ., 1987, 384 p. (in Russian).
  10. PNAE G-7-002-86. Norms for Calculating the Strength of Equipment and Pipelines of Nuclear Power Plants. Moscow. Energoatomizdat Publ., 1989, 525 p. (in Russian).
  11. Кириллов П.Л., Бобков В.П., Жуков А.В., Юрьев Ю.С., Справочник по теплогидравлическим расчетам в ядерной энергетике. Т. 1. – М.: ИздАТ, 2010. – 770 с.
  12. Kirillov P.L., Bobkov V.P., Zhukov A.V., Yuriev Yu.S. Handbook of Thermohydraulic Calculations in Nuclear Power. Volume 1. Moscow. IzdAT Publ., 2010, 770 p. (in Russian).
  13. Idelchik I.E., Handbook of Hydraulic Resistances. Moscow. Mashinostroenie Publ., 1992, 672 p. (in Russian).
  14. Chai L., Tassou S.A. A Review of Printed Circuit Heat Exchangers for Helium and Supercritical CO2 Brayton Cycles. Thermal Science and Engineering Progress. 2020, no. 18, pp. 1-22; DOI: https://doi.org/10.1016/j.tsep.2020.100543 .
  15. HEATRIC. Available at: https://www.heatric.com (accessed Apr. 04, 2022).

Brayton cycle supercritical CO2 liquid metal cooled reactors recompression thermodynamic cycle

Link for citing the article: Leskin S.T., Slobodchuk V.I., Shelegov A.S. Computational Analysis of the Power Conversion Loop of a Nuclear Power Plant Unit with the Closed S-CO2 Brayton Cycle. Izvestiya vuzov. Yadernaya Energetika. 2022, no. 3, pp. 18-29; DOI: https://doi.org/10.26583/npe.2022.3.02 (in Russian).