Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

14C in Tree Rings in the Vicinity of the Nuclear Facility Deployment Areas

3/20/2021 2022 - #01 Environmental aspects

Nazarov E.I. Kruzhalov A.V. Vasyanovich M.E. Ekidin A.A. Kukarskikh V.V. Parkhomchuk E.V. Petrozhitsky A.V. Parkhomchuk V.V.

DOI: https://doi.org/10.26583/npe.2022.1.09

UDC: 621.039.58

14C is naturally and artificially occurred radionuclide presented in atmosphere. 14C is produced during the operation of a nuclear reactor of any type, enters the atmosphere and became a part of carbon cycle. The article presents the results of measuring the concentration of 14C in the tree rings of 10 pines in the area of the Beloyarsk NPP (BelNPP) and the Institute of Nuclear Materials (INM), Zarechny. The sampling site, located 1200 m east of the INM, was selected based on long-term observations of meteorological parameters. The measurements were carried out using the accelerator mass spectrometer of the Institute of Nuclear Physics G.I. Budker, Novosibirsk. The influence of the operation of nuclear installations on the concentration of 14C in the atmospheric air is demonstrated. The range of values for the concentration of carbon-14 in the sample ranged from 116.0 ± 4.4 to 192.0 ± 8.5 pMC.

References

  1. Environmental and Source Monitoring for Purposes of Radiation Protection. – IAEA Safety Standards Series No. RS-G-1.8. International Atomic Energy Agency. Vienna, Austria. IAEA, 2005, 136 p. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1216_web.pdf (accessed Sep. 07, 2021).
  2. Ekidin A.A., Zhukovsky M.V., Vasyanovich M.E. Identification of the main dose-forming radionuclides in NPP discharges. Atomnaya Energiya. 2016, v. 120, iss. 2, pp. 106-108. Available at: https://j-atomicenergy.ru/index.php/ae/article/view/486/465 (accessed Sep. 07, 2021); DOI: https://doi.org/10.1007/s10512-016-0107-x (in Russian).
  3. Nazarov E.I., Ekidin A.A., Vasiljev A.V. Assessment of the atmospheric carbon-14 caused by NPP discharges. Izvestiya Vysshikh Uchebnykh Zavedenij. Fizika. 2018, v. 61, no. 12-2, pp. 67-73 (in Russian).
  4. The List of Pollutants in Relation to which Measures of State Regulation in the Field of Environmental Protection are Applied. Approved by the Order of the Government of the Russian Federation of 08.07.2015 No. 1316-р (in Russian).
  5. INPRO Methodology for Sustainability Assessment of Nuclear Energy Systems: Environmental Impact of Stressors. Vienna. IAEA (Nuclear Energy Series No. NG-T-3.15), 2016, 94 p. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1733_web.pdf (accessed Sep. 07, 2021).
  6. Management of Waste Containing Tritium and Carbon)14. Vienna. IAEA (Technical Reports Series No. 421), 2004, 109 p. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/TRS421_web.pdf (accessed Sep. 07, 2021).
  7. Vasilenko I.Ya., Osipov V.A., Rublevsky V.P. Radioactive Carbon. Priroda. 1992, no. 12, pp. 59-65. Available at: http://evolution.powernet.ru/library/vasilen.htm (accessed Sep. 07, 2021) (in Russian).
  8. Sources and Effects of Ionizing Radiation. Report to the General Assembly with Scientific Annexes. Vol I. UNSCEAR, 2000, 654 p. Available at: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Report_Vol.I.pdf (accessed Sep. 07, 2021).
  9. The Power Reactor Information System (PRIS) Official Site of the International Atomic Energy Agency. Available at: https://www.iaea.org/PRIS (accessed Sep. 07, 2021).
  10. Russkikh I.M. IVV-2M Nuclear Research Reactor. Atomic Energy. 2017, v. 121, iss. 4, pp. 235-239; DOI: https://doi.org/10.1007/s10512-017-0190-7 .
  11. Magnusson A., Stenstroom K., Adliene D. et al. Carbon-14 Levels in the Vicinity of the Lithuanian Nuclear Power Plant Ignalina. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2007, v. 259, iss. 1, pp. 530-535. DOI: https://doi.org/10.1016/j.nimb.2007.01.197 .
  12. Mazeika J., Petrosius R., Pukiene R. Carbon-14 in Tree Rings and Other Terrestrial Samples in the Vicinity of Ignalina Nuclear Power Plant, Lithuania. Journal of Environmental Radioactivity. 2008, v. 99, iss. 2, pp. 238-247; DOI: https://doi.org/10.1016/j.jenvrad.2007.07.011 .
  13. Ezherinskis Zh., Shapolaite J., Pabedinskas A. et al. Annual Variations of 14C Concentration in the Tree Rings in the Vicinity of Ignalina Nuclear Power Plant. Radiocarbon. 2018, v. 60, no. 4, pp. 1227-1236; DOI: https://doi.org/10.1017/RDC.2018.44 .
  14. Janovics R., Kern, Z., Guttler D. et al. Radiocarbon Impact on a Nearby Tree of a Light-Water VVER-Type Nuclear Power Plant, Paks, Hungary. Radiocarbon. 2013, v. 55, no. 2, pp. 826-832; DOI: https://doi.org/10.1017/S0033822200057982 .
  15. RB-106-15. Safety Guide for the Use of Atomic Energy. Recommended Methods for Calculating the Parameters Necessary for the Development and Establishment of Standards for Maximum Permissible Emissions of Radioactive Substances into the Atmospheric Air. Moscow. Rostekhnadzor Publ., 2015 (in Russian).
  16. Carbon-14 and the Environment. IRSN Radionuclide Fact Sheet. Institut de Radioprotection et de Surete Nucleaire. France, 2010, 19 p. Available at: https://www.irsn.fr/EN/Research/publications-documentation/radionuclides-sheets/environment/Documents/Carbone_UK.pdf (accessed Sep. 07, 2021).
  17. Lysikov A.I., Kalinkin P.N., Sashkina K.A. et al. Novel Simplified Absorption-Catalytic Method of Sample Preparation for AMS Analysis Designed at the Laboratory of Radiocarbon Methods of Analysis (LRMA) in Novosibirsk Akademgorodok. International Journal of Mass Spectrometry. 2018, v. 433, pp. 11-18; DOI: https://doi.org/10.1016/j.ijms.2018.08.003 .
  18. Nazarov E.I., Kruzhalov A.V., Ekidin A.A. et al. Instruments and Methods for Measuring 14С (Review). Pribory i Tekhnika Eksperimenta. 2021, v. 64, no. 6, pp. 790-795. DOI: https://doi.org/10.1134/S0020441221060166 (in Russian).
  19. Alinovsky N.I., Goncharov A.D., Klyuev V.F. et al. Accelerator Mass Spectrometer SB RAS. Zhurnal Tehnicheskoy Fiziki. 2009, v. 79, no. 9, pp. 107-111. Available at: https://journals.ioffe.ru/articles/viewPDF/9798 (accessed Sep. 07, 2021). DOI: https://doi.org/10.1134/S1063784209090151 (in Russian).
  20. Stenstroom K., Skog G., Georgiadou E., Genberg J. & Mellstroom A. A Guide to Radiocarbon Units and Calculations. Lund University, Department of Physics, Division of Nuclear Physics Internal Report LUNFD6 (NFFR-3111). 2011, pp. 1-17. Available at: https://www.hic.ch.ntu.edu.tw/AMS/A%20guide%20to%20radiocarbon%20units%20and%20calculations.pdf (accessed Sep. 07, 2021).
  21. Levin I., Kromer B., Schoch-Fischer H. et al. δ 14CO2 Record from Vermunt. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A, 1994. Available at: https://cdiac.ess-dive.lbl.gov/trends/co2/cent-verm.html (accessed Sep. 07, 2021).
  22. Setting Authorized Limits for Radioactive Discharges: Practical Issues to Consider. IAEA-TECDOC-1638, International Atomic Energy Agency. Vienna: IAEA, 2010, 80 p. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1638_web.pdf (accessed Sep. 07, 2021).

carbon-14 pine tree rings accelerator mass spectrometer nuclear reactor nuclear power plant