Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Nuclear-Optical Converters for Detecting Intense Neutron Fields

12/08/2021 2021 - #04 Application of nuclear tech

Baskov P.B. Marichev G.V. Sakharov V.V. Stepanov V.A.

DOI: https://doi.org/10.26583/npe.2021.4.11

UDC: 53.083.94/.087; 621.039.531

In the design of nuclear-optical converters (NOC) for detecting intense neutron fields (fluxes over 1⋅1015 cm–2·s–1), it is proposed to use hybrid gas ionization chambers (IC), in which electrical and optical neutron detecting methods are combined. For hybrid ICs, a technology is proposed for obtaining radiation-resistant and mechanically strong radiator materials capable of operating at temperatures up to 1000°C. This technology is based on solid-phase boron diffusion saturation of steel. It is shown that, at thermal neutron fluxes from 1⋅1010 n/(cm2·s), the integral intensity of argon luminescence as a result of ionization by α-particles and 7Li ions from layers of boride phases is sufficient for detection. The combination of optical and radiation properties of multicomponent fluoride glasses makes it possible to use them as condensed active substances of NOCs. Choosing the elemental and isotopic composition, it becomes possible to use fluoride glasses for multichannel neutron detection as well as to significantly simplify the procedure for separating gamma and neutron components of radiation under conditions of intense radiation fluxes. It has been experimentally shown that upon irradiation with a neutron flux of 1⋅1017 n/(cm2·s), the intensity of Nd IR luminescence in glasses based on zirconium fluoride (ZBLAN) increases in the presence of Gd, which interacts with neutrons.


  1. Sakharov V.V., Baskov P.B., Berikashvili V.Sh., Ivkina O.V., Kosov D.E., Mosyagina I.V., Frolov N.N., Sharipova M.A. Oxide Nanoscale Modification of the Surface of Inorganic Materials. Nanoinzheneriya. 2011, no. 6, pp. 15-25 (in Russian).
  2. Sakharov V.V., Mosyagina I.V., Baskov P.B., Stepanov V.A. Physics and Materials Science Combinatorics of Film-Fiberglass Materials for Radiation-Luminescent Detection of Neutron Fluxes. Voprosy Radiatsionnoy Bezopasnosti. 2016, no. 2 (82), pp. 55-63 (in Russian).
  3. Malyshev E.K., Zasadych Yu.B., Stabrovsky S.A. Gas Discharge Detectors for Monitoring Nuclear Reactors. Moscow. Energatomizdat Publ., 1991, 160 p. (in Russian).
  4. Baskov P.B., Marichev G.V., Sakharov V.V., Stepanov V.A. Hybrid cameras for detecting neutron fields. Proc. of the XIV-th All-Russian Scientific Conference «Technologies and Materials for Extreme Conditions», ed. ac. B.F. Myasoedov. Moscow. MTsAI RAN Publ., 2019, pp. 332-336 (in Russian).
  5. Potapov S.P. On the Use of Stable Boron Isotopes. Atomnaya Energiya. 1961, v.10, iss. 3, pp. 244-252 (in Russian).
  6. Samsonov G.V., Serebryakova T.I., Neronov V.A. Borids. Moscow. Atomizdat Publ., 1975, 376 p. (in Russian).
  7. Evdokimov V.D., Klimenko L.P., Evdokimova A.N. Hardening Technology for Machine-Building Materials: Reference Book. 2-nd ed. Kiev. Professional Publ., 2006, 352 p. (in Russian).
  8. Voroshin L. Boring of Industrial Steels and Cast Irons: Reference Book. Minsk. Belarus’ Publ., 1981, 205 p. (in Russian).
  9. Striganov A.R., Sventitsky N.S. Spectral Line Tables. Moscow. Atomizdat Publ., 1966, 900 p. (in Russian).
  10. Physical Quantities: Handbook. Eds. I.S. Grigorieva, E.Z. Meilikhova. Moscow. Energoatomizdat Publ., 1991, 1232 p. (in Russian).
  11. Omarov O.A., Omarova N.O., Omarova P.Kh., Ramazanova A.A., Al-Khareti F.M.A., Khachalov M.B. Plasma Spectroscopy of Spark Breakdown of Gases in Strong Magnetic Fields. Inzhenernaya Fizika. 2013, no. 5, pp. 50-58 (in Russian).
  12. Egorov Yu.A. Scintillation Method of Spectrometry of Gamma Radiation and Fast Neutrons. Moscow. Gosatomizdat Publ., 1963, 306 p. (in Russian).
  13. Patent USA 5680423 (Oct.1997) Perkins, et al. (class USA 376153).
  14. Hobson P.R., et al. Dense, Fast, Radiation-Tolerant Fluoro-Hafnate Glass Scintillators for Electromagnetic Calorimeters in High Energy Physics. Proc. of the Int. Conf. on Inorganic scintillators and their applications (SCINT95). Delft University Press (Netherlands), 1996, pp. 317-324.
  15. Stepanov V.A., Baskov P.B., Chernov V.M., Fedorov V.D., Khorozova O.D., Kurdyavko P.V., Sakharov V.V., Stepanov P.A. Fluoride glasses as materials for radiation optics. Proc. of the XIII-th Int. Symposium on Non-Oxide Glasses and New Optical Glasses. Pardubice, Czech Republic, 2002. Part II, pp. 674-677.
  16. Baskov P.B., Sakharov V.V., Stepanov V.A. Multicomponent Fluoride Glasses for Detecting Radiation Fields. Voprosy Radiatsionnoy Bezopasnosti. 2015, no. 3, pp. 115-120 (in Russian).
  17. Sakharov V.V., Baskov P.B., Stepanov V.A., Stepanov P.A., Federov V.D. Oxygen-Free-Optical Materials for Radiation Opticsю VANT. Ser. Materialovedenie i Novyye Materialy. 2004, iss.1 (62), pp. 231-244 (in Russian).
  18. Baskov P.B., Kurdyavko P.V., Plaksin O.A., Sakharov V.V., Stepanov V.A., Stepanov P.A. Radioluminescence of Fluoride Glasses. Proc. of the XIII-th Int. Symposium on Non-Oxide Glasses and New Optical Glasses. Pardubice, Czech Republic, 2002. Part II, pp. 534-536.
  19. Makhov V.N., Kamenskikh I.A., Terekhin M.A. et. al. Proc. of the Int. Conf. on Inorganic Scintillators and Their Application (SCINT95), 1995, pp. 208-211.
  20. Baskov P.B., Sakharov V.V., Stepanov V.A., Stepanov P.A., and Kurdyavko P.V. Photoinduced Recovery of Gamma-Irradiated Fluoride Glasses. Technical Physics-Letters. 2002, v. 28, iss. 9, pp. 790 791; DOI: https://doi.org/10.1134/1.1511787 .
  21. McLane V. EXFOR Basis. A Short Guide to the Nuclear Reaction Data Exchange Format. BNL-NCS/05-Rev, 2000; DOI: https://doi.org/10.2172/767143 .

neutron detectors gamma detectors nuclear-optical converter ionization chamber scintillator fluoride glass intense neutron field