Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Determination of the Energy Characteristics of the Reactions UF6 ↔ UF5 + F and UF6 ↔ UF4 + F2

6/15/2021 2021 - #02 Fuel cycle and nuclear waste management

Khromov K.Yu. Orlov A.V. Belov I.A. Nevinitsa V.A.

DOI: https://doi.org/10.26583/npe.2021.2.06

UDC: 621.039.31

We used the quantum-mechanical methods to estimate the energy barriers of the dissociation and recombination reactions UF6 ↔ UF5 + F and UF6 ↔ UF4 + F2. The energy characteristics of these reactions are found to be strongly asymmetric: the dissociation reaction barriers exceed the recombination reactions barriers by more than 4 eV. The equilibrium atomic configurations of F2, UF4, UF5, and UF6 have been determined using precision quantum mechanical calculations. The U-F bond lengths obtained as a result of the calculations are in good agreement with experimental data. It was found that the decay reaction UF6 → UF5 + F is either barrier-free, or the energy barrier for such a reaction is less than the resolving power of the method (~ 0.1 eV). For the decay UF6 → UF4 + F2, there is an energy barrier with a height of about 0.3 eV. An initial approximation was proposed for the arrangement of UF6 atoms in order to find the saddle points of the UF6 dissociation reactions. In this initial configuration, all 7 atoms of the UF6 molecule are located in the same plane. The F atoms are located at the vertices of a regular hexagon, and the U atom is at the center of such a hexagon. The results of this work can be used to determine the constants of thermal reactions of dissociation and recombination UF6 ↔ UF5 + F and UF6 ↔ UF4 + F2. These constants are necessary for modeling the physicochemical processes occurring during the enrichment of spent nuclear fuel (SNF).


  1. Smirnov A.Yu., Sulaberidze G.A., Alekseev P.N., Dudnikov A.A., Nevinitsa V.A., Prosyolkov V.N., Chibinyaev A.V. Evolution of Isotopic Composition of Reprocessed Uranium during the Multiple Recycling in Light Water Reactors with Natural Uranium Feed. VANT. Ser. Fizika Yadernykh Reaktorov. 2010, iss. 4, pp. 70-80 (in Russian).
  2. Matveev L.V, Tsenter E.M. Uranium232 and its Influence on the Radiation Situation in the Nuclear Fuel Cycle. Moscow. Energoizdat Publ., 1985, 72 p. (in Russian).
  3. Kislov A.I., Titov A.A., Dmitriev A.M., Sintsov A.E. Radiation Aspects of the use of Regenerated Uranium at JSC «MSZ» in the Production of Nuclear Fuel. Yadernaya i Radiatsionnaya Bezopasnost’. A Special Issue. 2012, pp. 52-59 (in Russian).
  4. Smirnov A.Yu., Nevinitsa V.A., Fomichenko P.A., Gusev V.E, Sulaberidze G.A. Enrichment of Regenerated Uranium in a Double Cascade of Gas Centrifuges with its Full Return to Fuel Reproduction. Vestnik NIYaU MIFI. 2018, v. 7, no. 6, pp. 449-457 (in Russian).
  5. Mazin V.I., Vodolazskikh V.V., Krutikh V.N., Mazur R.L. Fomin A.V., Zhurin V.A. Method of Isotopic Recovery of Regenerated Uranium. Patent RU2497210C1, 2013 (in Russian).
  6. Vodolazskikh V.V., Kozlov V.A., Mazin V.I., Strekhov M.I., Shidlovsky V.V., Schelkanov V.V. Method of Isotopic Recovery of Regenerated Uranium. Patent RU2282904C2, 2006 (in Russian).
  7. Smirnov A.Yu., Pavlovichev A.M., Scherenko A.I., Nevinitsa V.A., Sulaberidze G.A., Blandinsky V.Yu., Rodionova E.V., Gusev V.Е. LWR Fuel Cycle with Reprocessed Uranium Complete Recycling. Vestnik NIYaU MIFI. 2019, v. 8, no. 6, pp. 498-506 (in Russian).
  8. Shiflett C.H., Steidlitz M.E., Rosen F.D., Davis W. Jr. The Сhemical Effect of Alpha Particles on Uranium Hexafluoride. J. Inorg. Nucl. Chem. 1958, v. 7, pp. 210-223.
  9. Belov I.A.; Grol’ A.V.; Nevinitsa V.A.; Poveshchenko O.Yu., Smirnov A.Yu., Sulaberidze G.A. Radiolysis of 232,234U Enriched Regenerated Uranium Hexafluoride at the Temporary Storage Stage in a Separation Plant. Atomnaya Energiya. 2019, v. 126, iss. 5, pp. 305-309 (in Russian).
  10. Baron Peters. Reaction Rate Theory and Rare Events Simulations. – Elsevier, 2017.
  11. Zewail Ahmed H. Femtochemistry: Ultrafast Dynamics of the Chemical Bond. World Scientific Series in XX-th Century Chemistry, 1994.
  12. Avery H.E. Basic Reaction Kinetics and Mechanisms. MacMillan Press, 1974.
  13. Jensen Frank. Introduction to Computational Chemistry. 2nd edition. Wiley, 2007. –
  14. Lewars Errol G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. 3rd edition. Springer, 2016.
  15. Han Keli and Chu Tianshu ed. Reaction Rate Constant Computations Theories and Applications. Royal Society of Chemistry, 2013.
  16. Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., Dal Corso A., Fabris S., Fratesi G., De Gironcoli S., Gebauer R., Gerstmann U., Gougoussis C., Kokalj A., Lazzeri M., Martin-Samos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasquarello A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A.P., Smogunov A., Umari P., Wentzcovitch R.M. J. Phys.: Condens. Matter. 2009, v. 21, p. 395502. DOI: http://dx.doi.org/10.1088/0953-8984/21/39/395502.
  17. Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., De Gironcoli S., Delugas P., Di Stasio R.A. Jr., Ferretti A., Floris A., Fratesi G., Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni., Jia J., Kawamura M., Ko H.-Y., Kokalj A., Kьзьkbenli E., Lazzeri M., Marsili M., Marzari N., Mauri F., Nguyen N.L., Nguyen H.-V., Otero-de-la-Roza A., Paulatto L., Poncй S., Rocca D., Sabatini R, Santra B., Schlipf M., Seitsonen A.P., Smogunov A., Timrov I., Thonhauser T., Umari P., Vast N., Wu X. and Baroni S. J. Phys.: Condens. Matter. 2017, v. 29, art. 465901.
  18. Kresse G. and Joubert D. Phys. Rev. B. 1999, v. 59, p. 1758.
  19. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters. 1996, v. 77, pp. 3865-3868.
  20. Chomaker Verners and Stevenson D.P. Some Revisions of the Covalent Radii and the Additivity Rule for the Lengths of Partially Ionic Single Covalent Bonds. Journal of the American Chemical Society. 1941, v. 63, pp. 37-40.
  21. Konings R.J.M., Booij A.S., Kovacs A., Girichev G.V., Giricheva N.I., Krasnova O.G. The Infrared Spectrum and Molecular Structure of Gaseous UF4 . Journal of Molecular Structure. 1996, v. 378, pp. 121-131.
  22. Jones Llewellyn H. and Ekberg Scott. Potential Constants and Structure of the UF5 Monomer. The Journal of Chemical Physics. 1977, v. 67, p. 2591.
  23. Seip Hans M. Studies on the Failure of the First Born Approximation in the Electron Diffraction. Acta Chemica Scandinavica. 1965, v. 19, p. 1955.
  24. Henkelman G. and Jуnsson H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, v. 113, p. 9978.
  25. Henkelman G. and Jуnsson H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces using only First Derivatives. J. Chem. Phys. 1999, v. 111, p. 7010.
  26. Heidrich Dietmar and Quapp Wolfgang. Saddle Points of Index 2 on Potential Energy Surfaces and their Role in Theoretical Reactivity Investigations. Theor. Chim. Acta. 1986, v. 70, pp. 89-98.
  27. Minyaev R.M., Getmanskii I.V., Quapp W. A Second-Order Saddle Point in the Reaction Coordinate for the Isomerization of the NH5 Complex: Ab initio Calculations. Russian Journal of Physical Chemistry. 2004, v. 78, no. 9, pp. 1494-1498.
  28. Bostick W.D., McCulla W.H., Trowbridge L.D. Gas-phase Thermal Dissociation of Uranium Hexafluoride: Investigation by the Technique of Laser-Powered Homogeneous Pyrolysis. Report for the U.S. Department of Energy under Contract No. DEAC05 840R21400. Available at: https://www.osti.gov/servlets/purl/6630899 (accessed Jul. 07, 2020).

double cascade radiolysis uranium hexafluoride regenerated uranium close fuel cycle