Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Analysis of the heart rate in a model test organism Daphniamagna as a new approach to the assessment of radioecological effects of irradiation

7/09/2020 2020 - #02 Nuclear medicine and biology

Morozova А.O. Kolesnikova N.I. Savina N.B. Uskalova D.V. Ustenko K.V.

DOI: https://doi.org/10.26583/npe.2020.2.13

UDC: 504.064.2.001.18: 504.064.36

The purpose of the work was to test the method of low-coherence interference microscopy as a new approach to analyzing the spatio-temporal characteristics of the heart rate in a model test object, Daphniamagna (D.magna), and assessing the radioecological effects of irradiation. As an affecter, acute external gamma irradiation at a dose of 10 Gy was used.

D.magna is a semi-transparent crustacean widely used in radiobiology and ecotoxicology. as a key model for analyzing the long-term effects of low doses and concentrations of pollutants. The heart rate of D.magna is mainly studied in screening of pharmaceutical substances at the stage of pre-clinical drug trials.

This study showed that the method of low-coherence interferometry is an effective tool for studying the heart rate of D.magna as a physiological stress-exposure function. The heart rate was measured at 2, 10, 14 and 19 days after irradiation simultaneously in the control and experimental groups of D.magna. ANOVA analysis showed a significant effect of time after gamma irradiation on changes in the heart rate of the experimental animals. At the same time, according to our data, the contribution of irradiation in the formation of a long-term effect in the period from 2 to 19 days after exposure was not revealed.

References

  1. Ebert D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. Bethesda (MD): National Center for Biotechnology Information (US); 2005. Chapter 2, Introduction to Daphnia Biology. Available at: http://www.ncbi.nlm.nih.gov/books/NBK2042/ (accessed Apr 10, 2020).
  2. Colbourne J.K., Pfrender M.E., Gilbert D., Thomas W.K., Tucker A., Oakley T.H., Tokishita S., Aerts A., Arnold G.J., M.K. Basu, Bauer D.J., Caceres C.E., Carme L., Casola C., Choi J.-H., Detter J.C., Dong Q., Dusheyko S., Eads B.D., Fryohlich T., Geiler-Samerotte K.A., Gerlach D., Hatcher P., Jogdeo S., Krijgsveld J., Kriventseva E.V., Kyultz D., Laforsch C., Lindquist E., Lopez J., Manak J.R., Muller J., Pangilinan J., Patwardhan R.P., Pitluck S., Pritham E.J., Rechtsteiner A., Rho M., Rogozin I.B., Sakarya O., Salamov A., Schaack S., Shapiro H., Shiga Y., Skalitzky C., Smith Z., Souvorov A., Sung W., Tang Z., Tsuchiya D., Tu H., Vos H., Wang M., Wolf Y.I., Yamagata H., Yamada T., Ye Y., Shaw J.R., Andrews J., Crease T.J., Tang H., Lucas S.M., Robertson H.M., Bork P., Koonin E.V., Zdobnov E.M., Grigoriev I.V., Lynch M., Boore J.L. The Ecoresponsive Genome of Daphniapulex. Science. 2011, v. 331, pp. 555-561.
  3. Smirnov N. 2013. Physiology of the Cladocera. Academic Press, San Diego, CA, USA.
  4. Lovern, S.B., Strickler, J.R., Klaper, R., 2007. Behavioral and physiological changes in Daphniamagna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ. Sci. Technol. 2007, v. 41, pp. 4465-4470.
  5. Kalenkov G.S., Kalenkov S.G., Shtanko A.E., Tiras H.P., Sarapultseva E.I. Correlation analysis of Daphniamagna heart rate using low-coherence interferometry. Proc. of the I3st Intern. (XIV3th Reg.) Sci. Conf. «Tekhnogennye Sistemy i Ekologicheskij Risk» Ed. A.A. Oudalova. Obninsk. IATE NIYaU MIFI Publ., 2017, p. 109 (in Russian).
  6. Sarapultseva E., Tiras K., Kalenkov S., Shtanko A., Kalenkov G. Low-coherent interferometry applied to Daphniamagna heartbeat counting and contrast enhancement in radiobiology and biomedicine. In: Physics, Engineering and Technologies for Biomedicine. The II3nd Int. Symposium: Book of Abstracts. NRNU MEPhI Publ., 2017, pp. 373-374.
  7. Tryapicyna G.A. Reaction of biocenoses of aquatic ecosystems to chronic radiation exposure. Abstract. Dr. biol. sci. diss. Moscow: MSU, 2011. 46 p. (in Russian).
  8. Melekhova O.P., Sarapultseva E.I., Evseeva T.I., Glazer V.M., Geras’kin S.A., Doronin YU.K., Kitashova A.A., Kitashov A.V., Kozlov Yu.P., Kondrat’eva I.A., Kossova G.V., Kotelevcev S.V., Matorin D.N., Ostroumov S.A., Pogosyan S.I., Smurov A.V., Solovyh G.N., Stepanov A.L., Tushmalova N.A., Cacenko L.V. Biological control of the environment: bioindication and bioassay. Eds. O. P. Melekhova and E. I. Sarapultseva. Moscow. Akademiya Publ., 2010. 288 p. (in Russian).
  9. Organisation for Economic Co3operation and Development (OECD). In: Test No 202: Daphnia Sp. Acute Immobilisation Test. OECD Publishing, Paris, 2012. 25 p.
  10. Mansoor Roomi S.Md., Ananta Narayanan B., Rohini S. A Novel Approach for Heart Beat Counting of Daphnia рulex. Proc. of the IV3th ICCCNT. July 436, 2013, Tiruchengode, India. 2013.
  11. Egorova E.I., Efremova O.V., KapyrinaYu.Yu. The changes in physiological parameters of phytoplankton and zoohydrobiota low-intensity microwave radiation. Proc. of the IV3th International Conference «Elektromagnitnye Izlucheniya v Biologii: BIO3EMI32008». Kaluga, Oct. 21323, 2008. Eds. G.V. Chernova, O.P. Andebera. Kaluga. KGPU n.a. K. E. Tsiolkovsky Publ., 2008, pp. 48-40 (in Russian).
  12. Kolupaev B.I., Andreev A.A., Samojlenko Yu.K. Optical method of heart rate registration in Daphnia. Gidrobiologicheskij Zhurnal. 1977, no. 3, pp. 19-22 (in Russian).
  13. Leont’ev V.V. Study of heart pulsation of Daphnia cucullata G.O. Sars, 1862 in tested solutions. Proc. of the Intern. Sci. and Practical Conf. «Modern Directions of Theoretical and Applied Research, 2013». Odessa. 2013, v. 1, no. 38, pp. 11-16 (in Russian).
  14. Usanov D.A., Skripal’ A.V., Vagarin A.Yu., Potapov V.V., SHmakova T.T., Mosiyash S.S. Laser autodyne interferometry of dynamic parameters of biological objects. Pis’ma v ZhTF. 1998, v. 24, no. 5, pp. 39-43 (in Russian).
  15. Podosinovikov N. P., Belyaev V. A., Dolgo-Saburov V. B. Research of inter-mediatory regulation of heart rate using an alternative test object D. magna. Eksperimental’naya i Klinicheskaya Farmakologiya. 2009, no. 6, pp. 49-52 (in Russian).
  16. Kalenkov S.G., Kalenkov G.S., Karpilova M.A., SHtan’ko A.E. Registration of hyperspectral holograms of Demodex eye mite in the near-infrared range. Medicinskaya Tekhnika. 2018, no. 6, pp. 18-22 (in Russian)
  17. Savina N.B., Uskalova D.V., Sarapultseva E.I. Using the MTT test to study the long-term effects of acute γ-irradiation in crustaceans Daphniamagna. Radiatsiya i Risk (Bulletin of the National Radiation and Epidemiological Register). 2018, v. 27, no. 1, pp. 86-93 (in Russian).
  18. Sarapultseva E.I. Biological effects of radiation exposure in lower crustaceans Daphniamagna. Analytical review. Radiatsionnaya Biologiya. Radioekologiya. 2017, v. 57, no. 4, pp. 414-428 (in Russian).
  19. Harris K.D.M., Bartlett N.J., Lloyd V.K. Daphnia as an Emerging Epigenetic Model Organism. Hindawi Publishing Corporation Genetics Research International. 2012, pp. 1-8.
  20. Sarapultseva E.I., Dubrova Yu.E. The long-term effects of acute exposure to ionising radiation on survival and fertility in Daphniamagna. Environmental Research. 2016, v. 150, pp. 138-143.
  21. Sarapultseva E.I. Direct and remote effects of radiation exposure in protozoa and crustaceans. Dr. of Biol. Sci. diss. Obninsk: IATE NIYaU MIFI. 2015. 218 p. (in Russian).
  22. Sarapultseva E.I., Melekhova O.P., Kossova G.V., Igolkina Yu.V., Alekseeva N.A. A. free radical reactions in vivo in Daphnia irradiation in low doses. Radiatsionnaya Biologiya. Radioekologiya. 2014, v. 54, no. 3, pp. 305-308 (in Russian).
  23. Sarapultseva E.I., Ryabchenko N.I., Igolkina Yu.V., Ivannik B.P. Use of cellular biochemical method for in vivo biotesting of radiation pollution of the environment. Radiacionnaya Biologiya. Radioekologiya. 2013, v. 53, no. 6, pp. 634-638 (in Russian).

gamma irradiation method of interferometry of living systems heart rate Daphniamagna radioecology long-term radiation-induced effect