Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

A thermohydraulic flow loop for developing novel solutions in the field of using digital twins for nuclear power facilities

7/09/2020 2020 - #02 Modelling processes at nuclear facilities

Laouar S. Delov M.I. Litvintsova Yu.E. Kuzmenkov D.M. Muradyan K.Yu. Navasardyan M.V. Kutsenko K.V.

DOI: https://doi.org/10.26583/npe.2020.2.11

UDC: 621.039

The experience is presented in building a thermohydraulic flow loop for developing technical and software solutions in using digital twins of nuclear equipment. The thermohydraulic flow loop was developed and manufactured at National Research Nuclear University MEPhI and represents a two-loop facility that allows investigating the processes of heat and mass exchange at forced and natural water circulation modes. The experimental facility allows one to obtain new data on heat transfer and hydrodynamics of two-phase flows round the fuel element bundles required for verification of computer codes. The obtained preliminary experimental results agree well with the calculations based on various codes.

As part of building a digital twin for the thermohydraulic flow loop, a system is developed to diagnose, control and monitor heat-exchange transients based on physically justified real-time techniques. Neural network technologies will make it possible to predict changes in the flow loop’s thermohydraulic parameters in response to external impacts. Further, a virtual prototype of the experimental facility is expected to be used in the training process and for distance learning.

References

  1. Muhuri P.K., Shukla A.K., Abraham A. Industry 4.0: A bibliometric analysis and detailed overview. Engineering Applications of Artificial Intelligence. 2019, v. 78, pp. 218-235. DOI: https://doi.org/10.1016/j.engappai.2018.11.007 .
  2. Wang S., Wan J., Zhang D., Li D., Zhang C. Towards smart factory for industry 4.0: a self- organized multi-agent system with big data based feedback and coordination. Computer Networks. 2016, v. 101, pp. 158-168. DOI: https://doi.org/10.1016/j.comnet.2015.12.017 .
  3. Liu X.F., Shahriar M.R., Al Sunny S.M.N., Leu M.C., Hu L. Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed. Journal of Manufacturing Systems. 2017, v. 43, pp. 352-364. DOI: https://doi.org/10.1016/j.jmsy.2017.04.004
  4. Farshid M., Paschen J., Eriksson T., Kietzmann J. Go boldly!: Explore augmented reality (AR), virtual reality (VR), and mixed reality (MR) for business. Business Horizons. 2018, v. 61, pp. 657-663. DOI: https://doi.org/10.1016/j.bushor.2018.05.009 .
  5. Lee J., Bagheri B., Kao H. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters. 2015, v. 3, pp. 18-23. DOI: https://doi.org/ 10.1016/j.mfglet.2014.12.001 .
  6. Gorecky D., Schmitt M., Loskyll M., Zuhlke D. Human-machine-interaction in the industry 4.0 era. IEEE International Conference on. IEEE. 2014, pp. 289-294. DOI: https://doi.org/ 10.1109/INDIN.2014.6945523 .
  7. Gusev I.N., Solovyev B.L., Padun S.P., Mayorova M.M. System development of intelligent operator support at unit No. 1 of the Novovoronezh NPP-2. Izvestiya vuzov. Yadernaya Energetika. 2019, v. 3, pp. 5-15. DOI: https://doi.org/10.26583/npe.2019.3.01 (in Russian).
  8. Lee H., Cha W.C. Virtual Reality-Based Ergonomic Modeling and Evaluation Framework for Nuclear Power Plant Operation and Control. Sustainability. 2019, v. 1, iss. 2630, pp. 1-16. DOI: https://doi.org/10.3390/su11092630 .
  9. Machadoa D.M., Cotellia A., Galvaoa D., Mola A.C.A., Carvalho P.V.R., Vidal M.C.R. Use dosimetry virtual tool for security studies physics and nuclear. Procedia Manufacturing. 2015, v. 3, pp. 1765-1771. DOI: https://doi.org/10.1016/j.promfg.2015.07.478 .
  10. Bestion D. From the direct numerical simulation to system codes - perspective for the multi-scale analysis of LWR thermalhydraulics. Nuclear Engineering and Technology. 2010, v. 42, pp. 608-619. DOI: https://doi.org/10.5516/NET.2010.42.6.608 .
  11. Wu Y. Development and application of virtual nuclear power plant in digital society environment. International Journal of Energy Research. 2019, v. 43, pp. 1521-1533. DOI: https://doi.org/10.1002/er.4378 .
  12. Grieves M. Digital twin: Manufacturing excellence through virtual factory replication. White paper. 2014, pp. 1-7.
  13. Liu F., Yang Z., Zhang B., Li T. Study on Ledinegg instability of two-phase boiling flow with bifurcation analysis and experimental verification. International Journal of Heat and Mass Transfer. 2020, v. 147, no. 118954, pp. 1-15. DOI: https://doi.org/10.1016/ j.ijheatmasstransfer.2019.118954 .
  14. Shi S., Schlegel J.P., Brooks C.S., Lin Y.C., Eoh J., Liu Z., Zhu Q., Hibiki T., Ishii M. Experimental investigation of natural circulation instability in a BWR-type small modular reactor. Progress in Nuclear Energy. 2015, v. 85, pp. 96-107. DOI: https://doi.org/10.1016/j.pnucene.2015.06.014 .
  15. Goel P., Nayak A.K., Ghosh P., Joshi J.B. Experimental study of bubble departure characteristics in forced convective subcooled nucleate boiling. Experimental heat transfer. 2018, v. 31, pp. 194-218. DOI: https://doi.org/10.1080/08916152.2017.1397821 .
  16. Delov M.I., Litvintsova Y.E., Kuzmenkov D.M., Laouar S., Maslov Y.A., Lavrukhin A.A., Balakin B.V., Kutsenko K.V. Diagnostics of transient heat transfer modes based on statistical and frequency analysis of temperature fluctuations. Experimental Heat Transfer. 2019, pp. 1-16. DOI: https://doi.org/10.1080/08916152.2019.1662517 .
  17. Balakin B.V., Delov M.I., Kutsenko K.V., Lavrukhin A.A., Laouar S., Litvintsova Y.E., Marchenko A.S., Maslov Y.A. Analyzing temperature fluctuations to predict boiling regime. Thermal Science j.tsep.2017.10.015 .
  18. Deev V.I., Kutsenko K.V., Lavrukhin A.A., Maslov Y.A, Delov M.I. Frequency analysis of fluctuations of the temperature of a heater and of sound noise in boiling used for the diagnostics of the changes in the heat-transfer regimes. Thermal Engineering. 2014, v. 61, pp. 590-593. DOI: https://doi.org/10.1134/S0040601514080035 .
  19. Idelchik I.E. Handbook of Hydraulic Resistances. Coefficients of Local Resistance and of Friction. Moscow. Mashinostroenie Publ., 1992. 672 p. (in Russian).
  20. Laouar S., Sakib M.N., Muqit Al S., Navasardyan M.V., Kutsenko K.V. Pressure drop in valve for different open flow areas. Journal of Physics: Conference Series. 2020, v. 1439, no. 012009, pp. 1-4. DOI: https://doi.org/10.1088/1742-6596/1439/1/012009 .
  21. Rodenas J., Zarza I., Burgos M.C., Felipe A., Sanchez-Mayoral M.L. Developing A Virtual Reality Application for Training Nuclear Power Plant Operators: Setting Up a Database Containing Dose Rates in the Refuelling Plant. Radiation Protection Dosimetry. 2004, v. 111, pp. 173-180. DOI: https://doi.org/10.1093/rpd/nch043 .

thermohydraulic flow loop heat transfer hydrodynamics computer simulation CFD digital twin diagnostics diagnostics of heat-transfer transients

Link for citing the article: Laouar S., Delov M.I., Litvintsova Yu.E., Kuzmenkov D.M., Muradyan K.Yu., Navasardyan M.V., Kutsenko K.V. A thermohydraulic flow loop for developing novel solutions in the field of using digital twins for nuclear power facilities. Izvestiya vuzov. Yadernaya Energetika. 2020, no. 2, pp. 122-134; DOI: https://doi.org/10.26583/npe.2020.2.11 (in Russian).