Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

NPP equipment fault detection methods

12/05/2019 2019 - #04 Current issues in nuclear energy

Katser I.D. Kozitsin V.O. Maksimov I.V.

DOI: https://doi.org/10.26583/npe.2019.4.01

UDC: 621.039.588

Increased requirements for reliability and economic efficiency of nuclear power plants (NPP) lead to increased demand for modern solutions to the basic problems of diagnosing equipment faults, i.e., detecting, localizing, determining the causes and predicting the development of malfunctions. Advanced solutions based on statistical analysis, machine learning, intelligent signal processing and other methods have been successfully implemented in many industries, where they have proven their effectiveness, reducing the cost of equipment repair and maintenance.

The authors analyze methods used to solve problems of detecting faults and deviations in the operation of NPP equipment. The most common equipment fault detection methods are classified and compared, their advantages and disadvantages are described and the requirements for input data are given.

The result of the work is a generalization of fault detection methods to simplify their choice for solving specific problems. In addition, a review of literature sources is provided, links to works with a theoretical description of methods and examples of industrial applications are given.

References

  1. Arkadov G.V., Pavelko V.I., Finkel’ B.M. Diagnostic systems of VVER. Moscow. Energoatomizdat Publ., 2010. 391 p. (in Russian).
  2. Arkadov G.V., Egorov S.V., Katser I.D., Kovalev E.V., Kozitsin V.O., Maksimov I.V., Pavelko V.I., Slepov M.T. Predictive analytics and diagnostics of NPP. Moscow. Diaprom Publ., 2019. 72 p. (in Russian).
  3. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants. Nuclear Energy Series no. NP-T-3.14. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2013. Available at: https://www.iaea.org/publications/8763/advanced-surveillance-diagnostic-and-prognostic-techniques-in-monitoring-structures-systems-and-components-in-nuclear-power-plants (accessed Jul 20, 2019).
  4. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer New York, 2009. 745 p.
  5. Chiang L.H., Russell E.L., Braatz R.D. Fault Detection and Diagnosis in Industrial Systems. Springer London, 2001. 279 p.
  6. Venkatasubramanian V., Rengaswamy R., Kavuri S. N. A review of process fault detection and diagnosis, Computers & Chemical Engineering, 27 (3), 2003, pp. 313-326.
  7. Venkatasubramanian V., Rengaswamy R., Kavuri S. N., Yin K. A review of process fault detection and diagnosis: Part iii: Process history based methods. Computers & chemical engineering, 2003, 27 (3), pp. 327-346.
  8. Qin S. J. Data-driven fault detection and diagnosis for complex industrial processes, IFAC Proceedings Volumes, 2009, 42 (8), pp. 1115-1125.
  9. Ma J., Jiang J. Applications of fault detection and diagnosis methods in nuclear power plants: A review. Progress in Nuclear Energy, 2011, 53 (3), pp. 255-266.
  10. Si X.-S., Wang W., Hu C.-H., Zhou D.-H. Remaining useful life estimation – a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213 (1), pp. 1-14.
  11. An D., Choi J. H., Kim N. H. Options for prognostics methods: A review of data-driven and physics-based prognostics, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics, 2013.
  12. Dai X., Gao Z. From model, signal to knowledge: A data-driven perspective of fault detection and diagnosis. IEEE Transactions on Industrial Informatics, 2013, 9 (4), pp. 2226- 2238.
  13. Aminikhanghahi S., Cook D. J. A survey of methods for time series change point detection. Knowledge and Information Systems, 2016, 51 (2), pp. 339-367.
  14. Patel H. R., Shah V. A. Fault detection and diagnosis methods in power generation plants the indian power generation sector perspective: An introductory review. PDPU Journal of Energy and Management, 2018, 2 (2), pp. 31-49.
  15. GOST R ISO 13381-1 2016. Monitoring the status and diagnostics of machines. Prediction of technical condition. Part 1. General management. Moscow. Standartinform Publ., 2017. 24 p. (in Russian).
  16. Chandola Varun, Banerjee Arindam, Kumar Vipin. Anomaly detection. ACM Computing Surveys, 2009, 41 (3), pp. 1-58.
  17. Ayo-Imoru R., Cilliers A. A survey of the state of condition-based maintenance (CBM) in the nuclear power industry. Annals of Nuclear Energy, 2018, 112, pp. 177-188.
  18. Ivanovskij R.I. Theory of Probability and Mathematical Statistics. Basics, applied aspects with examples and tasks in the Mathcad environment. BHV-Peterburg Publ., 2008. 528 p. (in Russian).
  19. Wald A. Sequential analysis. Courier Corporation, 1973. 213 p.
  20. Hines J.W., Garvey D. Development and application of fault detectability performance metrics for instrument calibration verification and anomaly detection. Journal of Pattern Recognition Research, 2006, 1 (1), pp. 2-15.
  21. Jin X., Guo Y., Sarkar S., Ray A., Edwards R.M. Anomaly detection in nuclear power plants via symbolic dynamic filtering. IEEE Transactions on Nuclear Science, 2011, 58 (1), pp. 277-288.
  22. Maio F. D., Baraldi P., Zio E., Seraoui R. Fault detection in nuclear power plants components by a combination of statistical methods. IEEE Transactions on Reliability, 2013, 62 (4), pp. 833-845.
  23. Tartakovsky A., Nikiforov I., Basseville M. Sequential Analysis: Hypothesis Testing and Changepoint Detection. Chapman and Hall/CRC, 2014. 575 p.
  24. Montgomery D.C. Introduction to Statistical Quality Control. John Wiley & Sons, 2007. 752 p.
  25. GOST R ISO 7870-1-2011. Statistical methods. Control charts. Part 1. General principles, no. ISO 7870-1-2011. Moscow. Standartinform Publ., 2011. 16 p. (in Russian).
  26. Qin S.J. Statistical process monitoring: basics and beyond. Journal of Chemometrics, 2003, 17 (8-9), pp. 480-502.
  27. Mujica L., Rodellar J., Fernandez A., Guemes A. Q-statistic and T2-statistic PCA based measures for damage assessment in structures. Structural Health Monitoring: An International Journal, 2010, 10 (5), pp. 539-553.
  28. Zhao C., Gao F., Online fault prognosis with relative deviation analysis and vector autoregressive modeling. Chemical Engineering Science, 2015, 138, pp. 531-543.
  29. Li W., Peng M., Wang Q. False alarm reducing in PCA method for sensor fault detection in a nuclear power plant. Annals of Nuclear Energy, 2018, 118, pp. 131-139.
  30. Ge Z., Zhang M., Song Z. Nonlinear process monitoring based on linear subspace and bayesian inference. Journal of Process Control, 2010, 20 (5), pp. 676-688.
  31. Xu C., Zhao S., Liu F. Distributed plant-wide process monitoring based on PCA with minimal redundancy maximal relevance. Chemometrics and Intelligent Laboratory Systems, 2017, 169, pp. 53-63.
  32. Yang H.-H., Huang M.-L., Yang S.-W. Integrating auto-associative neural networks with hotelling T2 control charts for wind turbine fault detection. Energies, 2015, 8 (10), pp. 12100-12115.
  33. Xiao H., Huang D., Pan Y., Liu Y., Song K. Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model. Chemometrics and Intelligent Laboratory Systems, 2017, 161, pp. 96-107.
  34. Encyclopedia of Mass Spectrometry, Elsevier, 2015. Available at: https://www.ebook.de/de/product/24358562/encyclopedia_of_mass_spectrometry.html (accessed Jul 20, 2019).
  35. Ferrer-Riquelme A. Statistical control of measures and processes. Comprehensive Chemometrics, Elsevier, 2009, pp. 97-126.
  36. Lucas J.M., Crosier R.B. Fast initial response for CUSUM quality-control schemes: Give your CUSUM a head start. Technometrics, 1982, 24 (3), pp. 199-205.
  37. Paul W., Barnett N. Control charting instrumental analyses. Laboratory Automation & Information Management, 1995, 31 (2), pp. 141-148.
  38. Simpson J.R., Keats J. Sensitivity study of the CUSUM control chart with an economic model. International Journal of Production Economics, 1995, 40 (1), pp. 1-19.
  39. Wu C., Yu M., Zhuang F., Properties and enhancements of robust likelihood CUSUM control chart. Computers & Industrial Engineering, 2017, 114, pp. 80-100.
  40. Fortea-Sanchis C., Escrig-Sos J. Quality control techniques in surgery: Application of cumulative sum (CUSUM) charts. Cirugia Espanola (English Edition), 2019, 97 (2), pp. 65-70.
  41. Bodnar O., Schmid W. CUSUM charts for monitoring the mean of a multivariate gaussian process. Journal of Statistical Planning and Inference, 2011, 141 (6), pp. 2055-2070.
  42. Ferrer-Riquelme A. Statistical Control of Measures and Processes. Comprehensive Chemometrics, Elsevier, 2009, pp. 97-126.
  43. Tobias P. Statistical process control and failure mode analysis. Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 8816-8824.
  44. Senturk S., Erginel N., Kaya I., Kahraman C. Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. Applied Soft Computing, 2014, 22, pp. 1-10.
  45. Haq A., Khoo M.B. An adaptive multivariate EWMA chart. Computers & Industrial Engineering, 127, 2019, pp. 549-557.
  46. Haq A., Khoo M. B. New adaptive EWMA control charts for monitoring univariate and multivariate coefficient of variation. Computers & Industrial Engineering, 2019, 131, pp. 28-40.
  47. Park J., Jun C.-H. A new multivariate EWMA control chart via multiple testing. Journal of Process Control, 2015, 26, pp. 51-55.
  48. Brodsky E., Darkhovsky B.S. Nonparametric Methods in Change Point Problems. Springer Science & Business Media, 2013. 210 p.
  49. Chen J., Gupta A.K. Parametric Statistical Change Point Analysis: with Applications to Genetics, Medicine, and Finance. Springer Science & Business Media, 2011. 273 p.
  50. Kawahara Y., Sugiyama M. Sequential change-point detection based on direct density ratio estimation, Statistical Analysis and Data Mining, 5 (2), 2011, pp. 114-127.
  51. Garreau D. Change-point detection and kernel methods. Ph.D. thesis, PSL Research University (2017). 144 p.
  52. Truong C., Oudre L., Vayatis N. Selective review of offline change point detection methods, arXiv. Available at: http://arxiv.org/abs/1801.00718v2 (accessed Jul 20, 2019).
  53. Lai T.L. Sequential changepoint detection in quality control and dynamical systems. Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57 (4), pp. 613-644.
  54. D’Angelo M.F., Palhares R.M., Takahashi R.H., Loschi R. H., Baccarini L.M., Caminhas W.M. Incipient fault detection in induction machine stator-winding using a fuzzy bayesian change point detection approach. Applied Soft Computing, 2011, 11 (1), pp. 179-192.
  55. Niculita O., Skaf Z., Jennions I.K. The application of bayesian change point detection in UAV fuel systems. Procedia CIRP, 2014, 22, pp. 115-121.
  56. Zavaljevski N., Gross K. C. Sensor fault detection in nuclear power plants using multivariate state estimation technique and support vector machines. Third International Conference of the Yugoslav Nuclear Society YUNSC 2000, 2000.
  57. Hines J.W., Usynin A. Mset performance optimization through regularization. Nuclear Engineering and Technology, 2005, 37 (2), pp. 177-184.
  58. Sanchez-Fernandez A., Baldan F., Sainz-Palmero G., Benitez J., Fuente M. Fault detection based on time series modeling and multivariate statistical process control. Chemometrics and Intelligent Laboratory Systems, 2018, 182, pp. 57-69.
  59. Filonov P., Lavrentyev A., Vorontsov A. Multivariate Industrial Time Series with Cyberattack Simulation: Fault Detection Using an LSTMbased Predictive Data Model. NIPS Time Series Workshop 2016, Barcelona, Spain, arXiv. Available at: http://arxiv.org/abs/1612.06676v2 (accessed Jul 20, 2019).
  60. Bishop C. M. Pattern Recognition and Machine Learning. Springer-Verlag, New York Inc., 2006. Available at: https://www.ebook.de/de/product/5324937/christopher_m_bishop_pattern_recognition_and_machine_learning.html (accessed Jul 20, 2019).
  61. Brockwell P.J., Davis R.A., Calder M.V. Introduction to Time Series and Forecasting. Volume 2, Springer, 2002. 434 p.
  62. Chatfield C. The Holt-Winters forecasting procedure. Applied Statistics, 1978, 27 (3), p. 264.
  63. Tratar L.F., Strmcnik E. The comparison of Holt-Winters method and multiple regression method: A case study. Energy, 2016, 109, pp. 266-276.
  64. Gers F. Learning to forget: continual prediction with LSTM, IXth International Conference on Artificial Neural Networks: ICANN 99, IEE, 1999.
  65. Greff K., Srivastava R.K., Koutnik J., Steunebrink B.R., Schmidhuber J. LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (10), pp. 2222-2232.
  66. GOST R ISO 13379-12015. Monitoring the status and diagnostics of machines. Methods of data interpretation and diagnosis. General leadership. Part 1. Moscow. Standartinform Publ., 2015. 34 p. (in Russian).
  67. Lu B., Upadhyaya B. Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis. Annals of Nuclear Energy, 2005, 32 (9), pp. 897-912.
  68. Li G., Hu X., Shen X., Chen X., Li Z. A novel unsupervised feature selection method for bioinformatics data sets through feature clustering, 2008 IEEE International Conference on Granular Computing, IEEE, 2008, pp. 41-47.
  69. Hajjem A., Bellavance F., Larocque D., Mixed-effects random forest for clustered data. Journal of Statistical Computation and Simulation, 2012, 84 (6), pp. 1313-1328.
  70. Ardakani M.H., Shokry A., Escudero G., Graells M., Espuna A. Unsupervised automatic updating of classification models of fault diagnosis for novelty detection. Computer Aided Chemical Engineering, Elsevier, 2018, pp. 1123-1128.
  71. Anderberg M. R. Cluster Analysis for Applications: Probability and Mathematical Statistics. Series of monographs and textbooks, Vol. 19. Academic press, 2014.
  72. Bengio Y., Gingras F., Goulard B., Lina J.-M., Scott K. Gaussian mixture densities for classification of nuclear power plant data. Computers and artificial intelligence, 1998, 17 (2-3), pp. 189-209.
  73. Baraldi P., Razavi-Far R., Zio E. Bagged ensemble of fuzzy c-means classifiers for nuclear transient identification. Annals of Nuclear Energy, 2011, 38 (5), pp. 1161-1171.
  74. Skomorohov A.O. Multidimensional Statistical Methods for Diagnosing Anomalous States of Nuclear Power Plants. Dr. Sci. (Eng.) Thesis. National Research Nuclear University MEPhI, 2011. 302 p. (in Russian).
  75. Perasso A., Campi C., Toraci C., Benvenuto F., Piana M., Massone A.M. Application of possibilistic C-means for fault detection in nuclear power plant data. Journal of Engineering for Gas Turbines and Power, , 2014, 137 (6), pp. 062901.
  76. Kulkowski K., Grochowski M., Kobylarz A., Duzinkiewicz K. Application of data driven methods in diagnostic of selected process faults of nuclear power plant steam turbine. Polish Control Conference, Springer, 2017, pp. 631-640.
  77. Wang B., Hu X., Li H. Rolling bearing performance degradation condition recognition based on mathematical morphological fractal dimension and fuzzy C-means. Measurement, 2017, 109, pp. 1-8.
  78. Liu F.T., Ting K.M., Zhou Z.-H. Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, IEEE, 2008.
  79. Sun L., Versteeg S., Boztas S., Rao A. Detecting Anomalous User Behavior using an Extended Isolation Forest Algorithm: An Enterprise Case Study, arXiv. Available at: http://arxiv.org/abs/1609.06676v1 (accessed Jul 20, 2019).
  80. Tan S.C., Ting K.M., Liu T.F. Fast anomaly detection for streaming data. Twenty-Second-International Joint Conference on Artificial Intelligence, 2011.
  81. Ding Z., Fei M. An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proceedings Volumes, 2013, 46 (20), pp. 12-17.
  82. Susto G.A., Beghi A., McLoone S. Anomaly detection through on-line isolation forest: An application to plasma etching. 2017 XXVIII-th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), IEEE, 2017.
  83. Mao W., Cao X., Zhou Q., Yan T., Zhang Y. Anomaly detection for power consumption data based on isolated forest, 2018 International Conference on Power System Technology (POWERCON), IEEE, 2018.
  84. Guha S., Mishra N., Roy G., Schrijvers O. Robust random cut forest based anomaly detection on streams. International Conference on Machine Learning, 2016, pp. 2712-2721.
  85. Chen W.-R., Yun Y.-H., Wen M., Lu H.-M., Zhang Z.-M., Liang Y.-Z. Representative subset selection and outlier detection via isolation forest. Analytical Methods, 2016, 8 (39), pp. 7225-7231.
  86. Tax D.M., Duin R.P. Support vector data description. Machine Learning, 2004, 54 (1), pp. 45-66.
  87. Park J., Kang D., Kim J., Kwok J.T., Tsang I.W. SVDD-based pattern denoising. Neural Computation, 2007, 19 (7), pp. 1919-1938.
  88. Chalapathy R., Menon A.K., Chawla S. Anomaly detection using oneclass neural networks, arXiv. Available at: http://arxiv.org/abs/1802.06360 (accessed Jul 20, 2019).
  89. Zhang Y., Liu X.-D., Xie F.-D., Li K.0-Q. Fault classifier of rotating machinery based on weighted support vector data description. Expert Systems with Applications, 2009, 36 (4), pp. 7928-7932.
  90. Wang X., lai Chung F., Wang S. Theoretical analysis for solution of support vector data description, Neural Networks, 24 (4), 2011, pp. 360-369.
  91. Tax D., Ypma A., Duin R. Support vector data description applied to machine vibration analysis, Proc. of the V-th Annual Conference of the Advanced School for Computing and Imaging. Citeseer, 1999, v. 54, pp. 15-23.
  92. Ayodeji A., kuo Liu Y. Support vector ensemble for incipient fault diagnosis in nuclear plant components. Nuclear Engineering and Technology, 2018, 50 (8), pp. 1306-1313.
  93. Vapnik V., Chapelle O. Bounds on error expectation for support vector machines. Neural Computation, 2000, 12 (9), pp. 2013-2036.
  94. Banerjee A., Burlina P., Meth R. Fast hyperspectral anomaly detection via SVDD. 2007 IEEE International Conference on Image Processing, IEEE, 2007.
  95. Li D., Wang Z., Cao C., Liu Y. Information entropy based sample reduction for support vector data description. Applied Soft Computing, 2018, 71, pp. 1153-1160.
  96. Lin C.-J. Formulations of support vector machines: a note from an optimization point of view. Neural Computation, 2001, 13 (2), pp. 307-317.
  97. Platt J.C. Fast Training of Support Vector Machines using Sequential Minimal Optimization. – Advances in Kernel Methods. Ed. by B. Scholkopf, C.J.C. Burges, A.J. Smola. MIT Press, Cambridge, MA, USA, 1999, Chapter «Fast Training of Support Vector Machines Using Sequential Minimal Optimization», pp. 185-208. Available at: http://dl.acm.org/citation.cfm?id=299094.299105 (accessed Jul 20, 2019).
  98. Du J.-Z., Lu W.-G., Wu X.-H., Dong J.-Y., Zuo W.-M. L-SVM: A radius-marginbased SVM algorithm with LogDet regularizationю Expert Systems with Applications, 2018, 102, pp. 113-125.
  99. Kefi T., Ksantini R., Kaaniche M. B., Bouhoula A. A novel incremental covariance-guided one-class support vector machine, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2016, pp. 17-32.
  100. Tulup’ev A.L., Nikolenko S.I., Sirotkin A.V. Bayesian networks: a logicalprobabilistic approach. Moscow. Nauka Publ., 2006. 608 p. (in Russian).
  101. Finn B., Jensen T.G.-N. Bayesian Networks and Decision Graphs – 2-nd Edition. Information Science and Statistics, Springer, 2007. Available at: http://gen.lib.rus.ec/book/index.php?md5=221D554B6699BF082377771696B32A6E (accessed Jul 20, 2019).
  102. Santoso N., Darken C., Povh G., Erdmann J. Nuclear plant fault diagnosis using probabilistic reasoning, 199 IEEE Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.99CH36364), IEEE, 2017.
  103. Cai B., Huang L., Xie M. Bayesian networks in fault diagnosis. IEEE Transactions on Industrial Informatics, 2017, 13 (5), pp. 2227-2240.
  104. Lampis M., Andrews J.D. Bayesian belief networks for system fault diagnostics. Quality and Reliability Engineering International, 2009, 25 (4), pp. 409-426.
  105. Lerner U., Parr R., Koller D., Biswas G. Bayesian fault detection and diagnosis in dynamic systems. AAAI/IAAI, 2000, pp. 531-537.
  106. Murphy K.P., Russell S. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis, University of California, Berkeley, 2002. 268 p.
  107. Smyth P. Hidden Markov models for fault detection in dynamic systems. Pattern Recognition, 1994, 27 (1), pp. 149-164.
  108. Soualhi A., Clerc G., Razik H., Lebaroud A. Fault detection and diagnosis of induction motors based on hidden Markov model. 2012 XXth International Conference on Electrical Machines, IEEE, 2012.
  109. Li J., Pedrycz W., Jamal I. Multivariate time series anomaly detection: A framework of hidden Markov models. Applied Soft Computing, 2017, 60, pp. 229-240.
  110. Bunks C., McCarthy D., Al-Ani T. Condition-based Maintenance Of Machines Using Hidden Markov Models. Mechanical Systems and Signal Processing, 14 (4), 2000, pp. 597-612.
  111. Don M.G., Khan F. Dynamic process fault detection and diagnosis based on a combined approach of hidden Markov and bayesian network model. Chemical Engineering Science, 2019, 201, pp. 82-96.
  112. Ross T.J. Fuzzy Logic with Engineering Applications. John Wiley & Sons, Ltd, 2010. 585 p.
  113. Shahinpoor M.,Wells D. Applications possibilities for fuzzy failure analysis, and diagnosis of reactor plant components and areas. Nuclear Engineering and Design, 1980, 61 (1), pp. 93- 100.
  114. Koppen-Seliger B., Kiupel N., Kellinghaus H.S., Frank P. A fault diagnosis concept for a high-pressure-preheater line. Proceedings of 1995 XXXIV-th IEEE Conference on Decision and Control, IEEE, 1995.
  115. Bujankin V., Zaharov V. Predicting drive faults using a fuzzy neural network. Vestnik Moskovskogo Avtomobil’no-Dorozhnogo Instituta (Gosudarstvennogo Tehnicheskogo Universiteta), 2007, 4, pp. 21-23 (in Russian).
  116. Yang W., Lee K.Y., Junker S.T., Ghezel-Ayagh H. Fuzzy fault diagnosis and accommodation system for hybrid fuel-cell/gas-turbine power plant. IEEE Transactions on Energy Conversion, 2010, 25 (4), pp. 1187-1194.
  117. Choi S.S., Kang K.S., Kim H.G., Chang S.H. Development of an on-line fuzzy expert system for integrated alarm processing in nuclear power plants. IEEE Transactions on Nuclear Science, 1995, 42 (4), pp. 1406-1418.
  118. Chang S.H., Kang K.S., Choi S.S., Kim H.G., Jeong H.K., Yi C.U. Development of the on-line operator aid system OASYS using a rule-based expert system and fuzzy logic for nuclear power plants. Nuclear Technology, 1995, 112 (2), pp. 266-294.
  119. Na M.G., Lee Y.J., Hwang I.J. A smart software sensor for feedwater flow measurement monitoring. IEEE Transactions on Nuclear Science, 2005, 52 (6), pp. 3026-3034.
  120. Holbert K.E., Lin K. Nuclear power plant instrumentation fault detection using fuzzy logic. Science and Technology of Nuclear Installations, 2012, v. 2012, pp. 1-11.
  121. Gvishiani A., Agayan S., Bogoutdinov S.R., Tikhotski S., Hinderer J., Bonnin J., Diament M. Algorithm flars and recognition of time series anomalies. System Research and Information Technologies, 2004, 3 (7).
  122. Jang J.-S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23 (3), pp. 665-685.
  123. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. Readings in Fuzzy Sets for Intelligent Systems, Elsevier, 1993, pp. 387-403.
  124. Pillay A., Wang J. Modified failure mode and effects analysis using approximate reasoning, Reliability Engineering & System Safety, 79 (1), 2003, pp. 69-85.
  125. Lo C., Chan P., Wong Y., Rad A., Cheung K. Fuzzy-genetic algorithm for automatic fault detection in HVAC systems. Applied Soft Computing, 2007, 7 (2), pp. 554-560.
  126. Kecman V. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT press, 2001. 608 p.
  127. Zio E., Baraldi P., Popescu I.C. A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor. Annals of Nuclear Energy, 2009, 36 (8), pp. 1159-1169.
  128. Sakthivel N., Sugumaran V., Babudevasenapati S. Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Systems with Applications, 2010, 37 (6), pp. 4040-4049.
  129. Aydin I., Karakose M., Akin E. Artificial immune inspired fault detection algorithm based on fuzzy clustering and genetic algorithm methods. 2008 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, IEEE, 2008.

fault detection nuclear power plants advanced analytics diagnostics data analysis