Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Detailed simulation of winfrith IRON 88 benchmark (ASPIS) IN (r, z)- and (x, y, z)-geometries

9/30/2019 2019 - #03 Modelling processes at nuclear facilities

Nikolaeva O.V. Gaifulin S.A. Bass L.P.

DOI: https://doi.org/10.26583/npe.2019.3.12

UDC: 519.6

We present results of simulation of the well-known experiment Iron 88 of database SINBAD. Rates of reactions 32S (n, p) 32P, 115In (n, n′) 115mIn, 103Rh (n, n′) 103mRh, 27Al (n, α) 24Na and 197Au (n, γ) 198Au have been measured in this experiment. The main difficulty is simulation of gold activation, as the detectors and their covers (cadmium) influence significantly on neutron flux.

We present the gold reaction simulation results as detectors and covers are specified by means of spatial grids. We simulate the experiment in both the two-dimensional (r, z)-geometry and the three-dimensional (x, y, z)-geometry. In last case we use a unstructured tetrahedral grid to specify detectors. We use neutron flux in cells forming detectors to find the gold reaction rate. We apply the multigroup cross-section libraries ENDFB-VII, ABBN-93, ABBN-RF in computations. The rest (threshold) reactions are simulated no taking into account detectors.

It is shown, that results of simulation of threshold reaction rates in different geometries with different cross-section libraries are agreed with each other and experimental data well. Results of simulation of the gold reaction are agreed with experimental data only when detectors and covers are taken into account via a spatial grid and three-dimensional (x, y, z)-geometry is used.

Simulation of gold foil activation in the Iron 88 benchmark should take into account influence of detectors on neutron flux.


  1. Sinbad abstract NEA-151735. Available at: https://www.oecd-nea.org/science/wprs/shielding/sinbad/asp_fe88/as88-abs.htm (accessed Apr 16, 2019).
  2. Kodeli I.A., Plevnik L. Nuclear data adjustment exercise combining information from shielding, critical and kinetics benchmark experiments ASPIS-Iron 88, Popsy and SNEAK-7A/7B. Progress in Nuclear Energy. 2018, v. 106, pp. 215-230. DOI: doi.org/10.1016/j.pnucene.2018.03.007.
  3. Kodeli I., Milocco A., Ortego P., Sartori E. 20 Years of SINBAD (Shielding Integral Benchmark Archive and Database). Progress in Nuclear Science and Technology. 2014, v. 4, pp. 308-311. Available at: http://www.aesj.net/publish/jnst/volume-index-pnst/pnst4 (accessed Apr 16, 2019).
  4. Palmiotti G, Salvatores M, Hursin M, Kodeli I., Gabrielli F, Hummel A. New approaches to provide feedback from nuclear and covariance data adjustment for effective improvement of evaluated nuclear data files. EPJ Web of Conferences. 2017, v. 146, no. 06003. DOI: doi.org/10.1051/epjconf/201714606003.
  5. Grabezhnoy V.A., Lomakov G.B., Manturov G.N. Calculation of series of radiation shielding experiments from data SINBAD with using the ABBN-RF multigroup cross section library. Yadernaya i Radiatsionnaya Bezopasnost’. 2017, no. 2(84), pp. 3-17 (in Russian). blog.secnrs.ru/2017/07/sindbad/
  6. Salome platform. Available at: https://www.salome-platform.org (accessed Apr 16, 2019).
  7. Schoberl J. NETGEN. An advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science. 1997, v. 1, no. 1, pp. 41-52. DOI: doi.org/10.1007/s007910050004.
  8. Carlson B.G. A Method of Characteristics and Other Improvements in Solutions Methods for the Transport Equations. Nuclear Science and Engineering. 1976, v. 61, pp. 408-425. DOI: doi.org/10.13182/NSE76-A26927.
  9. Chadwick M.B., Oblozinsky M., Herman M., Greene N.M., McKnight R.D., Smith D.L., Young P.G., MacFarlane R.E., Hale G.M., Frankle S.C., Kahler A.C., Kawano T., Little R.C., Madland D.G., Moller P., Mosteller R.D., Page P.R., Talou P., Trellue H., White M.C., Wilson W.B., Arcilla R., Dunford C.L., Mughabghab S.F., Pritychenko B., Rochman D., Sonzogni A.A., Lubitz C.R., Trumbull T.H., Weinman J.P., Brown D.A., Cullen D.E., Heinrichs D.P., McNabb D.P., Derrien H., Dunn M.E., Larson N.M., Leal L.C., Carlson A.D., Block R.C., Briggs J.B., Cheng E.T., Huria H.C., Zerkle M.L., Kozier K.S., Courcelle A., Pronyaev V., van der Marck S.C. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets. 2006, v. 107, no. 12, pp. 2931-3060. DOI: doi.org/10.1016/j.nds.2006.11.001
  10. Zabrodskaja S.V., Korchagina J.A., Koshcheev V.N, Nikolaev M.N., Tsiboulia A.M. Neutron reactions cross-sections library in BNAB-93 constant system. VANT. Ser.: Yadernye Konstanty. 1999, iss. 2, pp. 93-101 (in Russian). vant.ippe.ru/year1999/2/nuclear-reactor-data/636-11.html/
  11. Koshcheev V.N, Manturov G.N., Nikolaev M.N., Tsiboulia A.M. Group cross-sections library for reactor and shielding calculations. Izvestia Wysshikh Uchebnikh Zavedeniy. Yadernaya Energetika. 2014, no. 3, pp. 93-101 (in Russian). nuclear-power-engineering.ru/article/2014/03/10/
  12. Zabrodskaja S.V., Ignatjuk A.V., Koshheev V.N., Manohin V.N., Nikolaev M.N., Pronjaev V.G. ROSFOND – Russian National Library Of Evaluated Neutron Data. VANT. Ser.: Yadernye Konstanty. 2007, iss. 1-2, pp. 3-21 (in Russian). vant.ippe.ru/year2007/neutron-constants/543-1/
  13. Voloschenko A.M, Gukov S.V., Shvetsov A.V. ARVES-2.5 code for processing cross-section files in FMAC-M format for solving multi-group transport equation. User’s Manual. Rep. of KIAM RAS. No 7_24_004. Moscow. KIAM Publ., 2004 (in Russian).
  14. GROUPS utility. Available at: https://yadi.sk/d/u-c1sE8lHILCCg (accessed Apr 16, 2019).
  15. IRDFF library. Available at: https://www-nds.iaea.org/IRDFF/ (accessed Apr 16, 2019).
  16. Voloschenko A.M., Shvetsov A.V. KASKAD-1.5 – the code to solving neutron, photons and charge radiation transport equation in 2D geometries. Proc. of the VII Russian Scientific Conference «Shielding of Nuclear-Technical Plants». Obninsk. FEI Publ.,1998, pp. 49-51 (in Russian).
  17. Voloschenko A.M. KP1 acceleration scheme for inner iterations consistent with the weighted diamond differencing scheme for transport equation in a two-dimensional geometry. Zhurnal Vychislitel‘noj Matematiki i Matematicheskoj Fiziki. 2001, v. 41, no. 5, pp. 1379-1398 (in Russian). mi.mathnet.ru/zvmmf1290
  18. Nikolaeva O.V., Bass L.P., Gaifulin S.A. Parallel algorithm to solving the neutron transport equation in reactor shielding via unstructured tetrahedral grids by the code RadugaT. Proc. of the Int. Conf. «Parallel Computational Technologies». Rostov-na-Donu. 2018, pp. 319-331 (in Russian). elibrary.ru/item.asp?id=34919261.
  19. Nikolaeva O.V. Nodal scheme for the radiation transport equation on an unstructured tetrahedral mesh. Matematicheskie Modeli i Komp’yuternoe Modelirovanie. 2015, v. 7, no. 5, pp. 581-592 (in Russian). DOI: doi.org/10.1134/S2070048215060071.
  20. Parallel information technologies. Available at: https://parallel.ru/ (accessed Apr 16, 2019) (in Russian).

Iron 88 benchmark reactor rates experiment simulation tetrahedral grids parallel computations multigroup cross sections