Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Myrrha accelerator driven system programme: recent progress and perspectives

6/24/2019 2019 - #02 Current issues in nuclear energy

H.A. Abderrahim D. De Bruyn M. Dierckx R. Fernandez L. Popescu M. Schyns A. Stankovskiy G. Van den Eynde D. Vandeplassche

DOI: https://doi.org/10.26583/npe.2019.2.03

UDC: 621.039.5

The purpose of the MYRRHA programme is to demonstrate the ADS concept at pre industrial scale, to prove the transmutation efficiency in ADS and to serve as a flexible and multipurpose irradiation facility. The MYRRHA subcritical core fueled with highly enriched MOX fuel and cooled with LBE will be operated by a highpower superconducting linear accelerator delivering a proton beam of 600 MeV, 4 mA to an LBE spallation target. In September 2018, the Belgian government has approved the construction of the MYRRHA facility and its operation until 2038. In this paper, we describe the present status of the MYRRHA programme and the perspectives for implementation through a first infrastructure in 2026 to the full MYRRHA operation in 2036.

References

  1. H. Ait Abderrahim, P. Baeten, D. De Bruyn, J. Heyse, P. Schuurmans and J. Wagemans, MYRRHA, a Multipurpose hYbrid Reseach Reactor for Highend Applications, Nuclear Physics News, Volume 20, n°1, 2428 (2010). J.L. Gross and J. Yellen, Graph Theory and Its Applications, 1st Ed. CRC Press 1998. Available at: https://doi.org/10.1080/10506890903178913 (accessed Apr 22, 2019).
  2. D. De Bruyn, R. Fernandez and J. Engelen, Recent Developments in the Design of the Belgian MYRRHA ADS Facility, 2016 International Congress on Advances in Nuclear Power Plants (ICAPP’16), San Francisco, California, USA, 286-293 (2016).
  3. D. De Bruyn, H. Aпt Abderrahim, P. Baeten and C. Angulo, The Belgian MYRRHA ADS Programme. Part 1: The new phased implementation plan, 2018 International Congress on Advances in Nuclear Power Plants (ICAPP’18), Charlotte, North Carolina, USA, 1066-1073 (2018).
  4. Jongen, Y. (1999). “ADONIS: The ProtonDriven Neutron Source for Radioisotope Production”. In: Production Technologies for Molybdenum99 and Technetium99m. IAEATECDOC1065. Vienna, Austria: International Atomic Energy Agency (IAEA), pp. 139-146 (p. 44).
  5. H. Ait Abderrahim, A.A. Mazouzi, B. Arien, P. Baeten, D. De Bruyn, D. Maes, E. Malambu, P. Schuurmans, M. Schyns, V. Sobolev, G. van den Eynde, D. Vandeplassche, MYRRHA project – technical description, ANS/HAA/PB/DDB/3900.B043000/85/0810 (2008).
  6. EU, Integrated Project EUROTRANS. Contract nr. FI6WCT2004516520.
  7. D. De Bruyn, S. Larmignat, A. WoayeHune, L. Mansani, G. Rimpault , C. Artioli, Acceleratordriven systems for transmutation: main design achievements of the XTADS and EFIT systems within the FP6 IPEUROTRANS integrated project. International Congress on Advances in Nuclear Power Plants, ICAPP’10; 2010; San Diego (CA).
  8. D. De Bruyn, R. Fernandez, L. Mansani, A. WoayeHune, M. Sarotto, E. Bubelis. The fast spectrum transmutation experimental facility FASTEF: main design achievements (Part 1: core & primary system) within the FP7CDT collaborative project of the European commission. International Congress on Advances in Nuclear Power Plants (ICAPP ’12); 2012; Chicago (IL).
  9. G. Van den Eynde, E. Malambu, A. Stankovskiy, R. Fernandez and P. Baeten, An updated core design for the multipurpose irradiation facility MYRRHA, J. Nucl. Sci. Tech., 52 (7_8) (2015), 10.108000223131.2015.1026860. Available at: https://doi.org/10.1080/00223131.2015.1026860 (accessed Apr 22, 2019).
  10. D. De Bruyn, R. Fernandez and P. Baeten, The Belgian MYRRHA ADS Programme. Part 2: Recent developments in the reactor primary system, 2018 International Congress on Advances in Nuclear Power Plants (ICAPP’18), Charlotte (North Carolina, USA), 1074-1079 (2018).
  11. D. Mader, H. Hahnel, H. Holtermann, D. Koser, K. Kumpel, U. Ratzinger, W. Schweizer, M. Busch, H. Podlech, C. Angulo, J. Belmans, L. MedeirosRomao, D. Vandeplassche, Construction of the MYRRHA injector, in Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark, May 2017, paper TUPVA062, pp. 22212223, ISBN: 978-3954501823. Available at: https://doi.org/10.18429/JACoWIPAC2017TUPVA062, http://jacow.org/ipac2017/papers/tupva062.pdf, 2017 (accessed Apr 22, 2019).
  12. D. Vandeplassche et al., “The MYRRHA Linear Accelerator”, in Proc. IPAC’11, San Sebastiбn, Spain, Sep. 2011, paper WEP090
  13. K. Kumpel, D. Mader, P. Muller, N.F. Petry, and H. Podlech, “The New Injector Design for MYRRHA”, in Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark, May 2017, paper TUPVA068, pp. 2234-2236, ISBN: 9783954501823. Available at: https://doi.org/10.18429/JACoWIPAC2017TUPVA068, http://jacow.org/ipac2017/papers/tupva068.pdf, 2017 (accessed Apr 22, 2019).
  14. D. Vandeplassche et al., “Integrated Prototyping in View of the 100 MeV Linac for Myrrha Phase 1”, in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, Canada, Apr.May 2018, pp. 661-664. doi:10.18429/JACoWIPAC2018TUPAF003.
  15. Pantechnik S.A. Available at: http://www.pantechnik.com (accessed Apr 22, 2019)
  16. F. Bouly et al., “Commissioning of the MYRRHA Low Energy Beam Transport Line and Space Charge Compensation Experiments”, in Proc. 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark, May 2017, paper TUOBA2, pp. 1226-1229, ISBN: 978-395450-182-3, Available at: https://doi.org/10.18429/JACoWI-PAC2017-TUOBA2, http://jacow.org/ipac2017/papers/tuoba2.pdf, 2017 (accessed Apr 22, 2019).
  17. NTG Neue Technologien GmbH. Available at: http://www.ntg.de (accessed Apr 22, 2019).
  18. J. Brison, “A New Compact Solid State Amplifier Design for Particle Accelerators: The MYRRHA Genesis”, in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, Canada, Apr.May 2018, paper THPAL006.
  19. Bevatech GmbH. Available at: http://www.bevatech.com (accessed Apr 22, 2019).
  20. D. Mader et al., “Status and Development of the MYRRHA Injector”, in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, Canada, Apr.May 2018, pp. 432-434. doi:10.18429/JACoWIPAC2018MOPML017.
  21. D. Pauwels et al., Preclinical research and systematic production of innovative medical radioisotopes at ISOL@MYRRHA, In: Radiotherapy & Oncology Journal, Vol. 102, No. 1, 03.2012, p. 111111 Available at: https://doi.org/10.1016/S0167-8140(12)70189-5 (accessed Apr 22, 2019).
  22. J. Engelen et al., ISOL@MYRRHA Target Station Concept Design Study, Brix Workshop Gent 07 May 2014.
  23. P.G. Bricault et al., High Power Targets for Isol Radioactive Ion Beam Facility, Proceedings of the 2003 Particle Accelerator Conference. Available at: https://doi.org/10.1109/PAC.2003.1288945 (accessed Apr 22, 2019).
  24. L. Popescu, D. Houngbo, M. Dierckx, Highpower target development for the next generation ISOL facilities, Nucl. Instr. Meth. In Phys. Res. B (2019, to be published).
  25. M. Ashford, L. Popescu, D. Houngbo, M. Dierckx, H. Ait Abderrahim, Exploratory study for the production of Sc beams at the ISOL facility of MYRRHA, in: EMIS2018 conference proceedings, 2019. Available at: https://indico.cern.ch/event/616127/contributions/3016232/ (accessed Apr 22, 2019).

acceleratordriven system leadbismuth superconducting linear accelerator