Izvestia Vysshikh Uchebnykh Zawedeniy. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Program code for three-dimensional calculation of output characteristics for single-сell thermionic fuel element of thermionic nuclear power plant for various purposes

6/21/2017 2017 - #02 Modelling processes at nuclear facilities

Polous M.A. Solov’yev D.I. Yarygin V.I.

DOI: https://doi.org/10.26583/npe.2017.2.08

UDC: 621.039.578:629.7

In support of the state programs for development of the Arctic region of the Russian Federation, the Rosatom State Corporation is engaged in R&D activities to create a line of autonomous low capacity nuclear power plants (LCNPP) producing electric power up to 1 MW(e). To supply heat and electricity to consumers in the rated output power range of 10–100 kW(e), the most attractive are LCNPPs of direct energy conversion with an in-core thermionic system due to their high autonomy, compactness and easy servicing. The most important component of a thermionic nuclear power plant (TNPP) is a thermionic fuel element (TFE), in which the electrogenerating and fuel elements are structurally integrated. As the basic TFE of a TNPP for a LCNPP, the single-cell TFE developed for the TNPP «Yenisey» can be chosen. Experimental studies and tests of thermionic reactors are complex and expensive; therefore, an integral part of designing TNPPs is mathematical modeling of physical processes occurring in the TFE. The paper presents the results of three-dimensional numerical modeling of thermal and electrical characteristics of a single-cell TFE for a TNPP as part of one possible LCNPP designs. These results were obtained using a technique developed on the basis of the modern software package COMSOL Multiphysics® and named by the authors «COMSOL-TFE-SC». Initial data for a single-cell TFE calculation are formulated. A description is made of the TFE mathematical model development stages in the COMSOL-TFE-SC program. The results are presented of a three-dimensional numerical calculation of TFE thermal and electrical characteristics with the use of experimental databases on current-voltage characteristics of the thermionic converter with electrode pairs Wmono-Mo and Pt-(Cr-V)-alloy and results of neutronic calculations for a possible TNPP core structure as part of LCNPP and the heat flux distribution on an external surface of the sheet pipe of TFE received on the basis of estimated thermal-hydraulic calculations of TNPP.

References

  1. Yarygin V.I., Rujnikov V.A., Sinyavsky V.V. Kosmicheskie i nazemnye jadernye jenergeticheskie ustanovki prjamogo preobrazovanija jenergii [Space and terrestrial nuclear power plants of direct energy conversion]. Moscow. NRNU «MEPhI» Publ., 2016. 364 p. (in Russian).
  2. Romanov A.V. Teoriya kompleksnoy optimizatsii proyektirovaniya kosmicheskikh apparatov s yadernymi termoemissionnymi energeticheskimi ustanovkami [The complex optimization theory of the design of spacecraft with thermionic nuclear power plants]. St. Petersburg. NPO «Professional» Publ., 2010, pp. 15-95, 238-260 (in Russian).
  3. Andreyev P.V., Gulevich A.V., Zaritskiy G.A., Legostayev V.P., Nikonov A.M., Ovcharenko M.K., Pyshko A.P., Sinyavsky V.V., Yarygin V.I. Fiziko-tekhnicheskiye vozmozhnosti termoemissii dlya sovremennykh proyektov sozdaniya kosmicheskikh YaEU submegavattnogo klassa [Physical and technical capabilities of thermal emission for modern projects for the design of space NPP of submegawatt class]. Trudy mezhdunarodnoy konferentsii «Yadernyye i innovatsionnyye tekhnologii dlya kosmosa» (NETS02012), sektsiya 2 «Yadernaya energetika i dvigateli» [Proc. Int. Conf. «Nuclear and Innovative Technologies for Space» (NETS-2012), sec. 2 « Nuclear power and engines »]. USA, 2012, Report No. 3014 (in Russian).
  4. Strategiya razvitiya arkticheskoy zony Rossiyskoy Federatsii i obespecheniye natsional’noy bezopasnosti na period do 2020 goda. [The strategy of development for the Arctic zone of the Russian Federation and ensuring national security for the period up to 2020]. Ukaz Prezidenta Rossiyskoy Federatsii ot 20.02.2013 [Presidential Decree from 20.02.2013]. Available at: http://www.government.ru/info/18360/ (accessed 1 Sep. 2016) (in Russian).
  5. Gosudarstvennaya programma sotsial’no-ekonomicheskogo razvitiya arkticheskoy zony Rossiyskoy Federatsii na period do 2020 goda. [The state program of social and economic development of the Arctic zone of the Russian Federation for the period up to 2020]. Postanovleniye Pravitel’stva Rossiyskoy Federatsii ot 21.04.2014 [The Order of the Government of the Russian Federation from 21.04.2014]. Available at: http://www.government.ru/docs/11967/ (accessed 1 Sep. 2016) (in Russian).
  6. Rosatom predlozhil proizvodit’ reaktory, ne trebuyushchiye postoyannogo personala [Rosatom offered to produce reactors that do not require permanent staff]. RIA Novosti ot 10.06.2016 [RIA News from 10.06.2016]. Available at: http://www.vpk.name/news/ (accessed 1 Sep. 2016) (in Russian).
  7. Lazarenko G.E., Yarygin V.I., Pyshko A.P. Avtonomnaya yadernaya energeticheskaya ustanovka elektro- i teplosnabzheniya pryamogo preobrazovaniya teplovoy energii v elektrichestvo [Autonomous nuclear power plant electricity and heat of direct conversion of thermal energy into electricity]. V trudakh mezhdunarodnoy nauchno0prakticheskoy konferentsii «Malaya energetika – 2006» [Proc. Int. Conf. «Small-scale Power Generation – 2006»]. Moscow, 2006, pp. 68-70 (in Russian).
  8. Kukharchuk O.F., Yarygin V.I., Vybyvanets V.I. Atomnaya stantsiya maloy moshchnosti ASMM 10100 kVtel v severnom ispolnenii na osnove termoemissionnoy YAEU [Nuclear power station of plant capacity LCNPP 10100 kWel for northern-based thermionic NPP]. V trudakh kruglogo stola Mezhdunarodnogo foruma «Armiya – 2015» [Proc. Int. Round Table Forum «Army – 2015»]. Moscow reg., Cubinka. KVC «Patriot» Publ., 2015 (in Russian).
  9. Gryaznov G.M., Pupko V.Y. «Topaz-1». Sovetskaya kosmicheskaya yaderno-energeticheskaya ustanovka [«Topaz-1». Soviet space nuclear power plant]. Priroda. 1991, no. 10, pp. 29-36 (in Russian).
  10. Kukharkin N.E., Ponomarev-Stepnoy N.N., Usov V.A. Kosmicheskaya yadernaya energetika (yadernyye reaktory s termoelektricheskim i termoemissionnym preobrazovaniyem – «Romashka» i «Yenisey») [Space nuclear power (nuclear reactors with thermoelectric and thermionic conversion – «Romashka» and «Yenisey»)]. Moscow. IzdAt Publ., 2008. 146 p. (in Russian).
  11. Gontar’ A.S., Eremin S.A., Lapochkin N.V. Usovershenstvovannyy odnoelementnyy elektrogeneriruyushchiy kanal dlya termoemissionnoy YAEU povyshennoy moshchnosti [Advanced single-cell fuel element for thermionic NPP with increased power]. V trudakh Mezhdunarodnoy konferentsii «Yadernaya energetika v kosmose – 2005» [Proc. Int. Conf. «Nuclear Power in Space – 2005»]. Moscow-Podolsk, 2005, v. 2, pp. 279-283 (in Russian).
  12. Ofitsial’nyy sayt proizvoditelya «Comsol Multiphysics» [Official site of «Comsol Multiphysics» producer]. Available at: http://www.comsol.com/ (accessed 1 Sep. 2016) (in Russian).
  13. Polous M.A., Yarygin V.I., Vinogradov E.G. Programmnyy kompleks dlya trekhmernogo chislennogo rascheta teplovykh i elektricheskikh kharakteristik mnogoelementnogo elektrogeneriruyushchego kanala termoemissionnoy YaEU [Software for three-dimensional numerical calculation of thermal and electrical characteristics of the multi-cell thermionic fuel element for thermionic NPP]. Izvestiya vuzov. Yadernaya Energetika, 2012, no. 2, pp. 151-160 (in Russian).
  14. Solov’yev D.I., Polous M.A. Programmnyy kod COMSOL-EGK-SC dlya trekhmernogo rascheta elektroteplofizicheskikh kharakteristik odnoelementnogo elektrogene-riruyushchego kanala termoemissionnoy YAEU v sostave atomnoy stantsii maloy moshchnosti [The program code COMSOL-TFE-SC for three-dimensional calculation of characteristics for single-cell thermionic fuel element of thermionic NPP as a part of low capacity nuclear power plant]. V trudakh Rossiyskoy konferentsii molodykh uchenykh, spetsialistov, aspirantov, studentov «Atomnyye elektrostantsii sverkhmaloy moshchnosti dlya prikladnykh i uchebnykh tseley» [Proc. Russian Conf. of young scientists, specialists, graduate students «Nuclear power for ultra-low power applications and educational purposes»]. Obninsk. INPE NRNU «MEPhI» Publ., 2016, pp. 39-41 (in Russian).
  15. Polous M.A., Yarygin V.I. Metodika trekhmernogo rascheta vykhodnykh kharakteristik eksperimental’nogo termoemissionnogo preobrazovatelya [The technique of three-dimensional calculation of output characteristics of an experimental thermionic converter]. Nauchno0tekhnicheskiy vestnik Povolzh’ya, 2012, no. 2 (in Russian).
  16. Polous M. A., Alekseev P. A., Ekhlakov I. A., Sovremennyye raschetnyye tekhnologii obosnovaniya kharakteristik YAEDU v proyektnykh rabotakh sozdaniya termoemissionnykh KYAEU novogo pokoleniya [Modern computational technologies for justification the characteristics of nuclear power propulsion systems in design works of creation a new generation of thermionic space nuclear power unit]. Trudy MAI, 2013, no. 68, available at: http://www.mai.ru/science/trudy/published.php/ ID=41822 (in Russian).
  17. Yarygin V.I. Fizicheskiye osnovy termoemissionnogo preobrazovaniya energii. CH.1. Vvedeniye v spetsial’nost’ [Physical basis of thermionic energy conversion. Part 1. Introduction to Specialty]. Obninsk, INPE Publ., 2006, 104 p. (in Russian).
  18. Vinogradov E.G., Mironov V.S., Smolnikova G.I. Bank dannykh vol’tampernykh kharakteristik termoemissionnogo preobrazovatelya [The data bank of current-voltage characteristics of the thermionic converter]. Atomnaya energiya. 2000, v. 89, iss. 1, pp. 71-74 (in Russian).
  19. Yarygin V.I. Elektrodnyye materialy dlya energonapryazhennykh elektroge-neriruyushchikh kanalov termoemissionnogo reaktora-preobrazovatelya [The electrode material for energy-intensive thermionic fuel elements of thermionic converter reactor]. Raketno0kosmicheskaya tekhnika, ser. XII, 1988, no. 1-2, pp. 105-115 (in Russian).
  20. Vinogradov E.G., Linnik V.A., Lazarenko D.G. Metodika rascheta vol’tampernykh kharakteristik termoemissionnykh EGK slozhnoy geometrii [The method of calculation of cuurent-voltage characteristics of TFE with complex geometry]. Atomnaya energiya. 2009, v. 106, iss. 5, pp. 257-262 (in Russian).

thermionic NPP single-cell thermionic fuel element finite element analysis three-dimensional numerical modeling