Izvestia Vysshikh Uchebnykh Zawedeniy. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Genetic algorithms for nuclear reactor fuel loading and reloading optimization problems

6/21/2017 2017 - #02 Modelling processes at nuclear facilities

Sobolev A.V. Gazetdinov A.S. Samohin D.S.

DOI: https://doi.org/10.26583/npe.2017.2.07

UDC: 621.039.58

The article provides the prerequisites for the use of a genetic algorithm for optimization of loading and subsequent overloads of fuel assemblies in the nuclear reactor core. The reason why the use of classical methods based on continuous scanning of phase space or gradient approaches is unacceptable is given. The questions of choosing an optimization criterion are briefly discussed, in the quality of which the burn up depth of fuel is used. The burn up depth is estimated after the fuel assembly is unloaded from the core, i. e. after working off 3 campaigns.

An important aspect determining the efficiency of the use of the genetic algorithm in the considered task is the performance of the physical calculation of the reactor core with the detailing allowing to «feel» the change in the relative location of the fuel assemblies. The use of a coarse instrument leads to the uselessness of the proposed approach to optimizing the loading of the reactor core. On the other hand, excessive detailing entails a significant increase in the expenditure of computer time. In the presented work, the TRIGEX software package was used to analyze the neutron-physical characteristics of the reactor core, which provides an acceptable detailing and sensitivity of the results to changes in the reactor load.

The genetic algorithm implies the use of at least two basic procedures - selection and mutation. One of the most important questions for the application of the genetic algorithm is the definition of the basic concepts such as mutation, crossing, and specimen. The answers to these questions for this problem are given in the article. In addition, the main recommendations for the organization of procedures for crossing and mutation are also given.

The efficiency of using the developed model of the genetic algorithm is demonstrated in a test example of a BN type reactor. The results of the test application showed that the use of the proposed approach allows to search for optimal reactor loads, in the sense of the fuel placement chart at each reloading. The main goal of the work performed was to demonstrate the suitability and efficiency of a new, effective, modern approach to solving the problem of fuel loading into a nuclear reactor, which can give the quality of another, higher class.

References

  1. Kislicina T.S., Manturov G.N., Nikolaev M.N., Pivovarov V.F., Seregin A.S., Tsiboulya A.M. Certificate of state registration the computer program № 2013618540, TRIGEX. Registration at 11 November 2013.
  2. TRIGEX.051. Software attestation passport. Registration № 313 at 9 October 2012. Passport SEC NRS.
  3. Adeev V.A., Panov I.S., Melenchuk I.S. Opyt formirovaniya toplivnyh zagruzok reaktorov VVER-440 pri rabote na povyshennom urovne moshnosti [The experience of forming fuel loadings VVER-440 reactors at work within increased power level]. Available at: http://www.gidropress.podolsk.ru/files/proceedings/mntk2015/documents/mntk2015-043.pdf (accessed 13.12.2015) (in Russian).
  4. Samokhin D.S., Slotin V.S. Geneticheskiy algoritm v zadachakh optimizatsii peregruzki yadernogo topliva v RU tipa BN. [Genetic algorithm in nuclear fuel optimization problems for BN rector.] Abstracts of XIII International conference «Bezopasnost’ AES i podgotovka kadrov» [NPP Safety and Personnel Training]. Obninsk 1 – 5 Oct 2013. Obnonsk. INPE Publ., 2013, p. 251 (in Russian).
  5. Sobolev A.V., Gazetdinov A.S. Optimizacyi toplivnoj zagruzki yadernogo reaktora s pomosch’yu evolyucionnogo modelirovaniya [Optimization of nuclear reactor fuel loading by evolutionary modeling] Abstracts of IV International Scientific and Technical Conference «Innovate designs and technologies of nuclear power». Moscow. NIKIET Publ., 2016. 122 p. (in Russian).
  6. Avdeyev E.F., Leskin S.T., Chusov I.A, Slobodchuk V.I., Shelegov S.A., Kalyakin S.G., Zaryugin D.G. Raschetnoye obosnovaniye konstruktsii stenda dlya issledovaniya teplomassoobmena v aktivnoj zone reaktora BN-1200 [Calculated justification stand design to study heat and mass transfer in core of nuclear reactor BN-1200] Proc. All-Russian scientific and practical conference «Teplofizicheskiye osnovy energeticheskikh tekhnologij» [Thermophysical basis of energy technologies]. 6 – 8 October 2011. Tomsk. TPU Publ., 2011. 152 p. (in Russian).
  7. Belov S.B., Kiselov A.V., Marova Ye.V. Rezul’taty verifikatsii programm rascheta neytronno-fizicheskikh kharakteristik aktivnoj zony reaktora tipa BN-1200 [Results of the Verification of the Computer Codes Used for Analysis of the BN-1200 Reactor Core Neutronics]. VANT. Ser. Fizika yadernykh reaktorov. 2014, no. 4, p. 66 (in Russian).
  8. Shepelev S.F. BN-1200 project. Available at: http://www.innov-rosatom.ru/files/articles/2512d560b136e33f06e679b1e183cfc0.pdf (accessed 13.12.2015) (in Russian).
  9. Burakov M.V. Geneticheskij algoritm: teoriya i praktika (uchebnoye posobiye) [Genetic algorithm: theory and practice (manual)]. Saint Petersburg. GUAP Publ., 2008, 52 p. (in Russian).
  10. Toshinsky V.G., Sekimoto H., Toshinsky G.I. A method to improve multiobjective genetic algorithm optimization of a self-fuel-providing LMFBR by niche induction among nondominated solutions. Annals of Nuclear Energy, no. 27(5), pp. 397-410, 2000.
  11. Bat’ G.A., Bartolomey G.G., Baybakov V.D., Alkhutov M.S. Osnovy teorii i metody raschyota yadernykh energeticheskikh reaktorov [Base of theory and methods to nuclear power reactors calculation]. Manual for university. Edited by G. A. Bat’. Moscow. Energoizdat Publ.,
  12. 511 p. (in Russian).
  13. SSC RF-IPPE. Calculational codes and systems. Available at: http://www.ippe.ru/podr/abbn/libr/comp/4-1-1.php (accessed 13.12.2015) (in Russian).
  14. Volkov Yu.V., Samokhin D.S., Sobolev A.V., Shkarovskiy A.N. Razrabotka metodov i otsenka pokazateley nadezhnosti personala po statistike intsidentov na AES RF [Development of methods and staff reliability estimation based on statistics of incidents at Russian nuclear power plants]. Izvestiya vuzov. Yadernaya energetika. 2008, no. 4, pp. 15-24 (in Russian).
  15. Davidyuk N.V., Belov S.V. The formation of initial population in genetic algorithm of effective disposition of detectivity sensors on the maintenance object. Vestnik Astrakhanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Ser. Upravlenie, vychislitel’naya tekhnika i informatika. 2010, no 1, pp. 114-118 (in Russian).
  16. Panchenko T.V. Geneticheskie algoritmy: uchebno-metodicheskoe posobie [Genetic algorithms]. Astrakhan. Astakhanskij Universitet Publ., 2007. 87 p. (in Russian).
  17. Rutkovskaya D., Pilin’sky M., Rutkovsky L. Neural nets, genetic algorithm and fuzzy systems: 2-nd ed. Mosсow. Goryachaya liniya - Telekom Publ., 2008. 452 p. (in Russian).
  18. Skobcov Yu.A. Osnovy evolucionnyh vychislenij [Base evolutionary computation]. Donetsk. DonNTU Publ., 2008. 326 p. (in Russian).
  19. Poli R., Langdon W.B., McPhee N.F. A Field Guide to Genetic Programming. Available at: http://www.Lulu.com (accessed 10.09.2015)
  20. Koshev A.N. Salmin V.V., Generalova A.A., Bychkov D.S. The development of genetic algorithm with adaptive mutations to determine the global extremum function of n-variables. Scientific open access journal «Naukovedenie». 2016, v. 8, no. 6. Available at: http://naukovedenie.ru/PDF/32TVN616.pdf (accessed 16.11.2016) (in Russian).
  21. Generalov K.A. Matematicheskoe obespechenie i programmnye sredstva realizacii geneticheskih algoritmov na osnove teorii numeracii. Diss. kand. tekhn. nauk [Mathematical and program tools for implementing genetic algorithms based on number theory. Cand. Sci. (Engineering) Diss.]. Penza, 2009. 178 p. (in Russian).
  22. D’yachkov Yu.A. Semenov A.A., Generalova A.A. Prikladnaya optimizaciya v proektirovanii kolyosnyh mashin [Applied optimization in the design of wheeled vehicles]. Moscow. Mir Nauki Publ., 2016. 210 p. (in Russian).
  23. Gladkov L.A., Kurejchik V.V., Kurejchik V.M. Geneticheskie algoritmy [Genetic algorithms]. Moscow. FizMatLit Publ., 2006. 320 p. (in Russian).

optimization of fuel loading and reloading burnup value genetic algorithm nuclear reactor