Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Swelling of 16cr-15ni-2mo-mn-ti-v-b steel under dose rate from 1⋅10–8 to 1,7⋅10–6 dpa/s

3/22/2017 2017 - #01 Nuclear materials

Kinev E.A. Panchenko V.L.

DOI: https://doi.org/10.26583/npe.2017.1.06

UDC: 621.039.531

Radiation-induced swelling has a negative influence on the structural unit availability of the fast neutron reactor core. Therefore if to reduce swelling it is an important task to search for new steels and improve known ones.

Since 2003 the 16Cr-15Ni-2Mo-Mn-Ti-V-B steel shows a significant increase in radiation resistance as a result of the improvement of composition and heat treatment. The swelling of 16Cr-15Ni-2Mo-Mn-Ti-V-B improved steel is studied with JSC INM’s forces. The data about the maximum swelling temperature and the average speed of swelling in typical temperature ranges of the coolant and the dose rate of fast reactor was obtained.

Research materials are based on the results of hydrostatic weighing and transmission microscopy measurements of steel samples density and swelling. Specific matters of hydrostatic measurement errors were discussed considering metallography data and immersion liquid choice.

It was found that the average swelling rate of 16Cr-15Ni-2Mo-Mn-Ti-V-B improved steel under maximum swelling characteristic temperature is within the range of 0,04 – 0,14 %/dpa. There is a tendency of the characteristic temperature shift from 460 to 520°С as maximum damage dose increases from 60 to 80 dpa (1,3⋅10–6 and 1,7⋅10–6 dpa/s respectively). At low (less than 10 dpa) damage doses and minimum (less than 400°С) temperatures the swelling rate can reach 0,04 %/dpa. High-temperature metal corrosion causes hydrostatic measurement errors. According to the electron microscopy data, at temperature about 600°С and damage dose below 50 dpa, swelling rate does not exceed 0,01 %/dpa throughout the whole observation period.

References

  1. Wolters A, Reinolds A. Reaktory-razmnozhiteli na bystryh nejtronah. Moscow. Energoatomizdat Publ., 1986. 624 p. (in Russian).
  2. Porollo S.I., Konobeev Yu.V. Elektronno-mikroskopicheskie issledovaniya raspuhaniya i mikrostruktury stali EP-172 v holodnodeformirovannom sostoyanii, obluchennoy v kachestve obolochek tvelov reaktora BN-600 do vysokih povrezhdayuschih doz. Proc. IX Russian Conf. on Reactor material science. Dimitrovgrad. NIIAR Publ., 2009, pp. 550-559 (in Russian).
  3. Andrianov A.N., Chernov V.M. Radiatsionnaya povrezhdaemost’ materialov yadernyh energeticheskih ustanovok. VANT. Ser. Material science and new material. 2005, v. 2, no. 65, pp. 3-11 (in Russian).
  4. Budylkin N.I., Mironova E.G., Mitrofanova N.M., Chernov V.M. The influence of the damage dose rate on swelling of austenitic steels as type 16Cr-15Ni-3Mo-Nb which irradiated in BOR-60 and BN-350 fast reactors. Ibid., pp. 48-54 (in Russian).
  5. Amaev A.D., Kryukov A.M., Neklyudov I.M., Parshin A.M., Platonov P.A., Tihonov A.N., Hlopin N.S., Shtrombah Ya.I. Radiatsionnaya povrezhdaemost’ i rabotosposobnost’ konstruktsionnyh materialov. St. Petersburg. Polytechnica Publ., 1997. 312 p. (in Russian).
  6. Bakanov M.V., Maltsev V.V., Oshkanov N.N., Chuev V.V. Osnovnye rezultaty ekspluatatsii konstuktsionnyh materialov v aktivnyh zonah reaktora BN-600. Izvestiya vuzov. Yadernaya energetika. 2011, no. 1, pp. 177-186 (in Russian).
  7. Bakanov M.V., Maltsev V.V., Oshkanov N.N., Chuev V.V. The main results of workability control of fuel rods with new generation austenitic steel claddings. Ibid., pp. 187-195 (in Russian).
  8. Solonin M.I., Ioltuhovskiy A.G., Bibilashvili Yu.K., Leont’eva-Smirnova M.V., Medvedeva E.A., Mitrofanova N.M., Budanov Yu.P., Chernov V.M., Tselishev A.V. Problemy sozdaniya i modifikatsii nerzhaveyushih staley dlya detaley aktivnyh zon reaktorov na bystryh neytronah i termoyadernogo reaktora sinteza. Select VNIINM proceeding. Moscow. VNIINM Publ., 2002, v. 1, pp. 276-288 (in Russian).
  9. Portnyh I.A., Kozlov A.V. Metodologiya kolichestvennogo analiza radiatsionnoy poristosti v metallah. VANT. Ser. Material science and new material. 2002, v. 1, no. 59, pp. 41-54 (in Russian).
  10. Plachenov T.G., Kolosentsev S.D. Porometriya. Leningrad. Khimiya Publ., 1988, 176 p. (in Russian).
  11. State Standard 20018-74 (ISO 3369-75). Splavy tverdye spechenye. Metod opredeleniya plotnosti. Intr. 1976-01-01. Мoscow. Standards Publ., 1986, 5 p. (in Russian).
  12. Kinev E.A. Vnutritvel’naja korrozija obolochek iz nerzhaveyushej stali v usloviyah reaktornogo materialovedeniya. IzvestiYa vuzov. Yadernaya energetika. 2008, no. 2, pp. 107-113 (in Russian).
  13. Kalchenko A.S., Bryk V.V., Voevodin V.N., Lazarev N.P. Simulation of 18Cr-10Ni-TI steel swelling in imitation and reactor conditions. VANT. Ser. Radiation damage physics and radiation material science. 2009, v. 4, no. 2, pp. 131-139 (in Russian).
  14. Chernov I.I., Biryukova S.Yu., Kalin B.A., Mo Htet Vin., Tan Sve. The influence of radiation dose on the development and behavior of helium in FCC and BCC steels. VANT. Ser. Material science and new materials. 2006, v. 1, no. 66, pp. 396-404 (in Russian).
  15. Blohin A.I., Demin N.A., Leont’eva-Smirnova M.V., Potapenko M.M., Chernov V.M. Activation and transmutation of constructional materials in various neutron fields. Ibid., pp. 88-104 (in Russian).
  16. Blohin D.A., Chernov V.M., Mitrofanova N.M., Tselishev A.V., Blohin A.I. Yaderno-fizicheskie svojstva austenitnyh stalej CHS68 i EK164 v usloviyah dlitel’nogo nejtronnogo oblucheniya v reaktore BN-600. VANT. Ser. Material science and new material. 2015, v. 3, no. 82, pp. 22-37 (in Russian).

16Cr-15Ni-2Mo-Mn-Ti-V-B steel average radiation-induced swelling rate maximum swelling temperature dose rate

Link for citing the article: Kinev E.A., Panchenko V.L. Swelling of 16cr-15ni-2mo-mn-ti-v-b steel under dose rate from 1⋅10–8 to 1,7⋅10–6 dpa/s. Izvestiya vuzov. Yadernaya Energetika. 2017, no. 1, pp. 63-72; DOI: https://doi.org/10.26583/npe.2017.1.06 (in Russian).