Izvestia Vysshikh Uchebnykh Zawedeniy. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Optimization of breeding properties of the spallation neutron source target for ADS

12/25/2016 2016 - #04 Modelling processes at nuclear facilities

Frolova T.A.

DOI: https://doi.org/10.26583/npe.2016.4.12

UDC: 621.039.5, 621.039.53

One of the main components of an ADS is the spallation target, providing power plant by neutrons. This neutron source provides primary neutrons that multiply in the surrounding subcritical core or in the blanket in which transmutation reactions proceed. These primary neutrons are produced by the spallation reactions when heavy target nuclei are bombarded by high-energy protons from the accelerator. On average, per proton with the energy of 1 GeV under the spallation reactions in target containing nuclei of heavy elements (for example, Hg, Ta, W, U,) arises from 20 (for Hg and Pb) to 50 (for U) neutrons. Heavy elements such as lead, bismuth, mercury, tantalum and tungsten are considered as suitable materials for the targets. In the last years successfully developed lead-bismuth eutectic target.

In this paper shown that for every target material and energy there is an optimal target size which results in the escape of a maximum number of spallation neutrons from the target. Represented the results of calculations of the energy spectrum of neutrons produced in the reactions of the interaction of protons with heavy targets for the energy range of primary protons from 0.8 to 1.4 GeV.

Analysis changes of the neutron generation rate for the cylindrical target of diameter 10 cm and length of 1 to 120 cm at incident proton energies from 0.8 to 1.4 GeV made possible to calculate the optimum size of the target of heavy nuclei, for designed ADS. Optimization sizes of spallation neutrons target from natBi, natHg, natPb and natW were done.

References

  1. Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles, OECD/NEA, № 4453, 2002.
  2. Accelerator and Spallation Target Technologies for ADS Applications, OECD/NEA, № 5421, 2005.
  3. Artisyuk V., Konobeyev A., Stankovskiy A. Analysis of spallation products effect on the ADS safety and adjacent fuel cycle, Proceedings PSI, ARIA 08, p. 157-163.
  4. Abderrahimh H. A., Galambosd J., Gohara Y., Hendersonc S., Lawrencee G., McManamyd T., Muellerg A. C., Nagaitsevc S., Nolena J., Pitchere E., Rimmerf R., Sheffielde R., Todosow M. Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production, FERMILAB-FN-0907-DI, LA-UR-10-06754, 2010.
  5. Barashenkov V.S. Yaderno-fizicheskie aspecty elektroyadernogo metoda. Fizika elementarnyh chastits i atomnogo yadra, 1978, v. 9, iss. 5 (in Russian).
  6. Hendricks J.S., McKinney G.W., Durkee J.W., Finch J.P., Fensin M.L., James M.R., Johns R.C., Pelowitz D.B., Waters L.S. MCNPX Version 26C, LA-UR06-7991, 2006.
  7. Hendricks J.S., McKinney G.W., Fensin M.L., James M.R., Johns R.C., Durkee J.W., Finch J.P., Pelowitz D.B., Waters L.S., Johnson M.W., dan Gallmeier F.X. MCNPX 2.6.0 Extensions, Report LA-UR-08-2216, Los Alamos National Laboratory, April 11, 2008.
  8. MCNP4C – Monte Carlo N-Particle Transport Code System, Los Alamos National Laboratory, July 2000.
  9. Hendricks J.S., McKinney G.W., Waters L.S., Roberts T.L., Egdorf H.W., Finch J.P., Trellue H.R., Pitcher E.J., Mayo D.R., Swinhoe M.T., Tobin S.J., Durkee J.W., Gallmeier F.X., David J.-C. MCNPX EXTENSIONS Version 2.5.0, LANL Report LA-UR-05-2675, Los Alamos, 2005.
  10. Gudima K.K., Ososkov G.A., Toneev V.D. Model for Pre-Equilibrium Decay of Excited Nuclei. Soviet Journal of Nuclear Physics, 1975, v. 21, p. 138.
  11. Bertini H.W. Low-Energy Intranuclear Cascade Calculation. Physical Review, 1963, v. 131, pp. 1801–1821.
  12. Bertini H.W. Intranuclear Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus, Interactions in the Energy Range 340 to 2900 MeV and Comparison with Experiment. Physical Review, 1969, v. 188, pp. 1711 -1730.
  13. Amelin N. Physics and Algorithms of the Hadronic Monte-Carlo Event Generators. Notes for a Developer, CERN/IT/ASD Report CERN/IT/99/6, Geneva, Switzerland and JINR/LHE, Dubna, Russia; Geant4 User’s Documents, Physics Reference Manual, 1998.
  14. Fong P. Statistical Theory of Nuclear Fission, Gordon and Breach Science Publishers, New York, 1969.
  15. Chandler K.L., Armstrong T.W. Oak Ridge National Laboratory Report ORNL-TM-4744, 1972.
  16. Dresner L. EVAP, A Fortran Program for Calculation the Evaporation of Various Particles from Excited Compound Nuclei, Oak Ridge National Laboratory, ORNL-TM-196, 1962.
  17. Junghans A.R., de Jong M., Clerc H.-G., Ignatyuk A.V., Kudyaev G.A., Schmidt K.-H., Projectile-Fragment yields as a Probe for the Collective Enhancement in the Nuclear Level Density. Nuclear Physics A, 1998, v. 629, p. 635.
  18. Mashnik S.G., Gudima K.K., Sierk A.J., Baznat M.I., Mokhov N.V. CEM03.01 User Manual, LANL Report LA-UR-05-7321, Los Alamos, 2005.
  19. Natalenko A.A., Konobeyev A.Yu., Stankovskiy A.Yu., Mashnik S.G. High Energy Activation Data Library (HEAD-2009), Los Alamos National Laboratory Report, LA-UR-10-01397, 2010.
  20. Korovin Yu.A., Natalenko A.A., Pil’nov G.B., Konobeyev A.Yu., Stankovskiy A.Yu., Tihonenko A.V. Biblioteka protonnyh aktivatsionnyh yadernyh dannyh HEPAD-2008. Izvestiya vuzov. Yadernaya Energetika. 2009, no. 3, pp.97-105 (in Russian).
  21. Chadwick M.B., Hughes H.G., Little R.C., Pitcher E.J., Young P.G. Physics Models and Nuclear Data Evaluations for Enhanced Monte Carlo Transport, LANL Report LA-UR-00-3601, Los Alamos National Laboratory, 2000.

ADS spallation neutron sours target neutron yield neutron spectrum MCNPX