Izvestia Vysshikh Uchebnykh Zawedeniy. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Features of technology of purification from impurities of high-temperature sodium coolant in a fast reactor for hydrogen production and other innovative applications

12/25/2016 2016 - #04 Nuclear materials

Kozlov F.A. Kalyakin S.G. Sorokin A.P. Alekseev V.V. Trufanov A.A. Konovalov M.A. Orlova E.A.

DOI: https://doi.org/10.26583/npe.2016.4.11

UDC: 621.039.58

When creating large-scale atomic-hydrogen energy the most impotent becomes the decision of questions of questions of technological character, associated with high temperature level in the reactor facility (900°С) and large concentrations of hydrogen on long-lasting resources available: the establishment of technology of sodium coolant at high temperatures and concentration range of hydrogen for a long resources, provide corrosion resistance high-temperature radiation-resistant high-temperature structural materials in the oxygen content in the sodium coolant at the level of 0.1 PPM. The paper considers the issues of technology of purification from impurities high temperature of sodium used as a coolant in high-temperature fast reactor (BN-HT) 600 MW (th), earmarked for the production of hydrogen and other innovative applications. Examines the behavior of impurities in the circuits of BN-HT associated with the intensification of the processes of heat and masstransfer at high temperature (regularity of Arrhenius), with different regimes of operation. Special attention is paid to the purification of sodium in the BN-HT of hydrogen and tritium and corrosion products. Cleaning of sodium from the hydrogen and tritium with the use of vacuumish-tion through the membrane of vanadium or niobium will allow you to create compact, highly efficient effective cleaning systems sodium from the hydrogen. It is shown that the clearance of sodium from tritium concentrations, which are produced by the hydrogen its maximum allowable concentration (3,6 Bq/l according to NRB-992009), imposes more stringent requirements for the purification system from the hydrogen permeability coefficient of the cleaning system of the second contour from tritium to exceed 140 kg/s. When performing these conditions for BN-HT foundations of probability mass of tritium, 98%, will be accumulated in a compact purification system sodium loop of the second contour, 0,6% (~ 4⋅104 Bq/s) will be released to the environment, and 1.3% – in the produced product (hydrogen). Intensity of inflow of corrosion products (PC) in the sodium determination is the rate of corrosion of structural materials in high temperature sodium flows a significant amount of corrosion products. The calculations showed that for the first circuit of BN-HT quantity of corrosion products generated in the oxygen concentration in sodium of 1 million–1, more than 900 kg/year, if shell fuel rods made of steel EP-912-VD, and 464 kg/year, with shells made of molybdenum alloy. For the second circuit, the quantity of corrosion products is 263 kg/year for each loop. Given the high temperature experiments which illustrate the high effectiveness of the holding of suspensions of corrosion products on the filters in the low-temperature area proposed to cool the sodium to the required temperature with simultaneous retaining of corrosion products on the surfaces of the mass transfer, including filters. It is shown that at use 30% of capacity for the production of hydrogen with 50% efficiency of BN-HT could produce about 0.6⋅106 m3 of hydrogen per day, enough for a big modern, the refinery crude oil of average quality, and the implementation of other technologies.

References

  1. Kalyakin S.G., Kozlov F.A., Sorokin A.P., Bogoslovskaya G.P., Ivanov A.P., Konovalov M.A., Morozov A.V., Stogov V.Yu. Issledovanij v obosnovanie visokotemperaturnoi jadernoi energotexnologii s reaktorom na bistrix neitronax s natrievim teplonositelem dlaj proizvodstva vodoroda [Investigations in a substantiation of high temperature nuclear energy technology with fast neutron reactor cooled by sodium for hydrogen production]. Izvestiya vuzov. Yadernaya Energetika, 2016, no. 3, pp. 104-115 (in Russian).
  2. Levich V.G. Fiziko-himicheskaja gidrodinamika [Physical and chemical hydrodynamics]. Moscow. FizMatgiz Publ., 1959 (in Russian).
  3. Kozlov F.A., Sorokin A.P., Alekseev V.V. The High Temperature Sodium Coolant Technology in Nuclear Power Installations for Hydrogen Power Engineering. Thermal Engineering, 2014, v. 61, no. 5, pp. 348-356.
  4. Kozlov F.A., Konovalov M.A., Sorokin A.P., Alexeev V.V. Osobennosti massoperenosa tritiya v vysokotemperaturnoj YaEU s natrievym teplonositelem dlya proizvodstva vodoroda. Sbornik tezisov dokladov konferentsii «Teplofizika reaktorov na bystryh nejtronah (Teplofizika-2013)» [Features of tritium mass transfer in high-temperature NPP with the sodium coolant for hydrogen production]. Proceedings of conference «Thermal physics of fast reactors (Thermal physics-2013)», Obninsk, October, 30th – November, 1st, 2013. Obninsk. SSC RF-IPPE Publ., 2013, pp. 197-198 (in Russian).
  5. Belovodskij L.F., Gaevoj V.K. Grishmanovskij V.I. Tritij [Tritium]. Moscow. Energoatomizdat Publ., 1985 (in Russian).
  6. Nevzorov B.A., Zotov V.V., Ivanov V.A., Starkov O.V., Kraev N.D., Umnjashkin E.B., Solovjev V.A. Korroziya konstructsionnyh materialov v zhidkih schelochnyh metallah [Corrosion of structural materials in liquid alkali metals]. Moscow. Atomizdat Publ., 1977 (in Russian).
  7. Beskorovajnyj N.M., Ioltuhovskij A.G. Konstructsionnye materially i zhidkometallicheskie teplonositeli [Structural material and liquid metal coolants]. Moscow. Energoatomizdat Publ., 1983 (in Russian).
  8. Kraev N.D. Korroziya i massoperenos konstructsionnyh materialov v natrievom i natrij-kalievom teplonositelyah [Corrosion and mass transfer of structural materials in the sodium and sodium-pottasium coolants]. Izvestiya vuzov. Yadernaya Energetika, 1999, no. 3, pp. 40-48 (in Russian).
  9. Zhang J., Marcille T.F., Kapernick R. Theoretical Analysis of Corrosion by Liquid Sodium and Sodium-Potassium Alloys. Corrosion. 2008, v. 64,no. 7, pp. 563-573.
  10. Alekseev V.V., Kozlov F.A., Zagorulko Yu.I. Issledovanie massoperenosa nikelya i hroma v neizotermicheskom uchastke tsirkulyatcionnogo natrievogo kontura [Research mass transfer of nickel and chromium in not isothermal section of a circulating sodium contour]: Preprint IPPE-2666. Obninsk. IPPE Publ., 1997 (in Russian).
  11. Thorley A.W. Mass Transfer Behavior of SS in Flowing Sodium Envoronment at Different Oxygen Levels. 4-th Int. Conf. on liquid metal engineering and technology. Avignon, France, 1988.
  12. Kraev N.D., Umnjashkin E.B., Starkov O.V. Vliyanie fiziko-himicheskih parametrov na skorost’ massoperenosa v zhidkih schelochnyh metallah [Influence of physical and chemical parameters on mass transfer velocity in liquid alkali metals]. Review information. OB-122. Obninsk. IPPE Publ., 1981 (in Russian).
  13. Singer R.M., Fleitman A.H., Weeks J.A., Issaacs H.S. Corrosion by Liquid Metals. Eds. J.E. Draley, J.R. Weeks. New-York: Plemun Press, 1970.
  14. Alekseev V.V. Massoperenos i tritiya produktov korrozii konstructsionnyh materialov v konturah s natrievym teplonositelem: Dissertatsiya na soiskanie uchyonoj stepeni doktora tehnicheskih nauk [Mass transfer tritium and corrosion products of structural materials in contours with the sodium coolant. The dissertation on competition of a scientific degree of a Dr. Sci. (Engineering). Obninsk. SSC RF-IPPE Publ., 2002 (in Russian).
  15. Schad M. Zur Korrosion von Austenitischen Stahlen in Natrium-Kreislaufen. KfK 2582. Als Dissertation genehmigt von der Fakultat fur Maschinenbau. Karlsruhe. KFK GMBH. 1978, 118 p. Avaiable at: http://bibliothek.fzk.de/zb/kfk-berichte/KFK2582.pdf.

fast reactor integral arrangement a three-loop diagram high temperature sodium impurities hydrogen tritium corrosion products system cleaning security steel