Izvestia Vysshikh Uchebnykh Zawedeniy. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Hydrozirconium reaction in heterogeneous compositions

12/25/2016 2016 - #04 Nuclear power plants

Milinchuk V.K. Klinshpont E.R. Belozerov V.I. Zagorodnyaya A.V.

DOI: https://doi.org/10.26583/npe.2016.4.03

UDC: 620.9 + 544 (075)

The research results presented in this article show the flow of a hydrozirconium reaction of hydrogen generation at temperatures below 100°C in heterogeneous compositions containing zirconium and a chemical activator (e.g., hydrated sodium metasilicate, sodium silicate glass, quicklime). The hydrogen yield increases with a temperature increase up to 95°C and is about 0.1–0.2 liters per 1 g of zirconium. Increasing the hydrogen yield due to a temperature increase depends on the activator used: the yield limit at 95°C is increased by about 2–3 times for crystalline sodium metasilicate, about 6 times for liquid sodium glass, and about 5–6 times for slaked lime. Due to a two-fold increase in the amount of the activator in the composition, the hydrogen yield increases by approximately 1.4 times.

A hydrozirconium reaction is caused by the chemical activators removing the passivating protective zirconium oxide (ZrO2)layer from the metal surface.

The zirconium oxide film on the particles of small sizes (about 10 microns) cannot have a stable crystal structure characteristic of the bulk phase and will have greater chemical activity. This thin oxide film is eliminated by the action of aqueous zirconium hydroxide solution with heating.

Processing of zirconium with γ-radiation as well as exposure to acidic and neutral aqueous media increase the hydrogen yield by about 1.2 times. The possibility of the hydrozirconium reaction occurrence should be considered in the organization of technical measures to ensure hydrogen safety at NPPs.

References

  1. Milinchuk V.K., Klinshpont E.R., Belozerov V.I. Avtonomnyj generator vodoroda na osnove himicheskogo razlogenia vody aluminiem. [Standalone hydrogen generator bazed on the chemical decomposition of water with aluminum.] Izvestiya vuzov. Yadernaya Energetika. 2015, no. 2, pp. 49-59 (in Russian).
  2. Milinchuk V.K., Klinshpont E.R., Belozerov V.I., Anan’ieva O.A., Laricheva T.E., Kunitsyna T.E. Chimicheskoe raslozhenie vody na vodorod v geterogennih aluminiysoderzhaschih kompoziayh [The chemical decomposition of water into hydrogen of aluminum in heterogeneous compositions]. Izvestiya vuzov. Yadernaya Energetika. 2014, no. 4, pp. 32-38 (in Russian).
  3. Klinshpont E.R., Roschektaev B.M., Millinchuk V.K. Kinetica nakopleniya vodoroda pri chimicheskom razlogenii vodyi v geterogennyh kompoziciayh. [Kinetics of the accumulation of hydrogen in chemical decomposition of water in heterogeneous compositions.] Al’ternativnaya entrgetika i ekologiya. 2012, no.9, pp. 116-120 (in Russian).
  4. Millinchuk V.K., Klinshpont E.R., Belozerov V.I., Khavroshina I.S., Sadikov E.I. Prevrascheniya oksidnykh pokrytij aluminiya pri imitacii factorov yadernyh energeticheskikh ustanovok. [The transformation of oxide coatings of aluminium by imitation factors of nuclear power plants]. Izvestiya vuzov. Yadernaya Energetika. 2016, no. 2, pp. 45-54 (in Russian).
  5. Kabakchi S.A., Bulgakova G.P. Radiation chemistry in the nuclear fuel cycle. Moscow. RHTU n.a. D.I. Mendeleev Publ., 1997, 96 p. (in Russian).
  6. Samoilov O.B., Usynin G.B., Bakhmetyev, A.M. The safety of nuclear energy installations.] Moscow. Energoatomizdat Publ., 1989, 280 p. (in Russian).
  7. Kirillov I.A., Rusanov V.D., Fridman A.A. O mehanizme katostrophicheskogo okisleniya zirkoniya. [On the mechanism of catastrophic oxidation of zirconium.]. Preprint. Moscow. Institut Atomnoj Energii im. I.V. Kurchatova Publ., 1990, 20 p. (in Russian).
  8. Keller V.D. Passivnye kataliticheskie recombinatory vodoroda dlya atomnyh elektrostancij. [Passive catalytic recombinatory hydrogen for nuclear power plants.]. Teploenergetika. 2007, no. 3, pp. 65-68 (in Russian).
  9. Karl-Heinz Neeb. The radiochemistry of nuclear power plants with light water reactors. Berlin, New York: Walter de Gruyter, 1997. 733 p.
  10. Kovtunenko P.V. Physical chemistry of solids. The crystals with defects. Moscow. Vysshaya shkola Publ., 1993, 352 p. (in Russian).
  11. Semenova I. V., Florianovich G.M., Khoroshilov A.V. Corrosion and protection of metals from corrosion. Moscow. Fizmatlit Publ., 2002, 336 p. (in Russian).
  12. Kotov A.G., Gromov V.V. Radiation physics and chemistry of heterogeneous systems. Moscow. Energoatomizdat Publ., 1988, 232 p. (in Russian).
  13. Babich B.N., Vershinina E.V., Glebov V.A., Kalikhman V.L. Metallic powders and powder materials. Ed. Levinsky Yu.V. Moscow. EKOMET Publ., 2005, 520 p. (in Russian).
  14. Andrievsky A. Material Science of hydrides. Moscow. Metallurgiya Publ., 1986, 128 p. (in Russian).
  15. Kalin B.A., Platonov P.A., Tuzov Yu.V., Chernov I.I., Shtrombakh Ya.I. Fizicheskoe materialovedenie. V. 6. Konstrukcionnye materialy yadernoj tehniki [Materials of construction of nuclear technology]. Moscow. NRNU MEPhI Publ., 2012, 736 p. (in Russian).
  16. Chernyaev T.P., Ostapov A.V. Vodorod v cirkonii. [The hydrogen in zirconium.]. VANT. Ser. Obespechenie bezopasnosti AES, 2013, v. 87, no. 5, pp. 16-32. (in Russian).
  17. Kirichenko V.G., Azarenko N.A. Nuclear-physical metallography of zirconium alloys. Kharkov. KhNU n.a. Karazin Publ., 2012, 122 p. (in Russian).
  18. Yanilkin A.V. Modelirovanie diffuzii vodoroda v gidride cirkoniya na osnove metoda kvantovoj molekulyarnoj dinamiki. [Modeling of hydrogen diffusion in zirconium hydride on the basis of quantum molecular dynamics.] Fizika tvyordogo tela. 2014, v. 56, iss. 9, pp. 1816-1821 (in Russian).

water zirconium hydrogen hydrozirconium reaction zirconium oxide heterogeneous composition sodium liquid glass hydrated sodium metasilicate lime