Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

On feasibility of using nitride and metallic fuel in the MBIR reactor core

3/28/2016 2016 - #02 Physics and technology of nuclear reactors

Eliseev V.A. Korobeinikova L.V. Maslov P.A. Malysheva I.V. Matveev V.I. Demeneva I.V.

DOI: https://doi.org/10.26583/npe.2016.2.11

UDC: 621.039.526

MBIR is a 150 MWt multipurpose research sodium cooled fast reactor. It is designed for a broad range of experimental researches conducted in different directions: life tests and operating regime tryouts of advanced fuel types, FEs, AEs, FAs; radiation tests of advanced structural materials; production of isotopes for various purposes, etc. That is why one of the key requirements for the reactor is high density of neutron flux (not less than 5⋅1015 n/cm2sec), which, in turn, depends on the type of the fuel used.

Vibrocompacted MOX fuel with a plutonium weight content of ~38% has been adopted currently as the standard MBIR fuel. The capabilities offered by the use of alternative highly dense fuel types in this reactor appear to be promising for the future large-scale nuclear power. The most attractive fuel types for advanced fast reactors are mixed nitride uranium-plutonium fuel and mixed metallic fuel (a three-component uranium plutonium-zirconium alloy).

A serious problem about power sodium cooled fast reactors refers to positive sodium void reactivity effect which increases even more with growth of fuel density. A characteristic property of nitride fuel is that it does not cause increase in sodium void reactivity effect due to fast neutron absorption by nitrogen, which improves safety in beyond the design basis accidents and lets reactivity margin for fuel burnup be minimized.

From the very beginning of fast reactor developments, metal fuel has been considered due to its highest density and thermal conductivity as well as to the minimum number of the moderator nuclei. All this provides the highest possible breeding, which is essential for fast-developing nuclear power. As applied to MBIR, this fuel provides the hardest possible neutron spectrum, minimum neutron cross sections and, therefore, high density of the flux and fast dpa rate.

Calculation research on the MBIR reactor with advanced types of dense fuel demonstrated that nitride fuel does not let one receive the required value of neutron flux, whereas metal fuel does (practically like MOX fuel). Also, metal fuel provides fast dpa rate though it requires that temperature conditions of irradiations should be changed. Neutronic features of these fuel types have been revealed in comparison with regular MOX fuel.


  1. Zhemkov I.Yu., Izhutov A.L., Novoselov A.E., Pogljad N.S., Svyatkin M.N. Eksperimental’nye issledovanija v BOR-60 i analiz vozmozhnosti ih prodolzheniya v MBIR. Atomnaya energiya. 2014, v. 116, iss. 5, pp. 280-283 (in Russian).
  2. Tuzov A.A., Gulevich A.,V., Kochetkov L.,A., Tret’yakov I.T., Lukasevich I.B., Zvir A.I., Izhutov A.L., Leont’eva-Smirnova M.V., Celischev A.V. Perspektivnye zadachi MBIR v obosnovanie harakteristik YaEU novogo pokoleniya i ego eksperimental’nye vozmozhnosti. Atomnaya energiya. 2015, v. 119, iss. 1, pp. 29-34 (in Russian).
  3. Bezzubcev V.S., Emel’janov V.S., Adamov E.O. Innovacionnyj proekt AES s reaktorom BREST i pristancionnym toplivnym ciklom [Innovative Design of NPP with a BREST reactor and fuel cycle]. Trudy II nauchnoj konferencii Minatoma Rossii «Atomnaya energetika. Sostoyanie i perspektivy» [Proc. II science conference Minatom of Russia «Nuclear Energy. Status and Prospects»]. Mosсow, 05 July 2002, p. 85 (in Russian).
  4. Eliseev V.A., Zabud’ko L.M., Malysheva I.V., Matveev V.I. Nitridnoe toplivo dlya perspektivnogo bystrogo natrievogo reaktora tipa BN-1200.[Nitride fuel for future fast sodium reactor BN-1200]. Atomnaya energiya. 2013, v. 114, iss. 5, pp. 266-271 (in Russian).
  5. Adamov E.O., Zabud’ko L.M., Matveev V.I., Rachkov V.I., Trojanov V.M., Homjakov Ju.S., Leonov V.N. Sravnitel’nyj analiz preimushhestv i nedostatkov ispol’zovaniya metallicheskogo i nitridnogo smeshannogo uran-plutonievogo topliva v bystryh reaktorah. Izvestija Rossijskoj akademii nauk. Energetika. 2015, no. 2, pp. 3-15 (in Russian).
  6. Zabud’ko L.M., Mamaev L.I., Trufanov A.A. Analiz raschjotnyh i jeksperimental’nyh dannyh s cel’ju vozmozhnogo opredelenija prichin razgermetizacii tvjelov s nitridnym toplivom reaktora BR-10 [Analysis of the calculated and experimental data for purpose determine the possible causes of depressurization of the fuel rods with nitride fuel reactor BR-10]. Sbornik dokladov sed’moj Rossijskoj konferencii po reaktornomu materialovedeniju. [Proc. of the Seventh Russian conference on reactor material]. Dimitrovgrad. NIIAR Publ., 8-12 Sept 2003, p. 102 (in Russian).
  7. Crawford D.C, Porter D.L., Hayes S.L. Fuels for sodium-cooled fast reactors: US perspective. Journal of Nuclear Materials. 2007, v. 371, pp. 202-231.
  8. Status and Trends of Nuclear Fuels Technology for Sodium Cooled Fast Reactors. IAEA Nuclear Energy Series. 2011, no. NF-T-4.1.
  9. Fast Reactor Database: 2006 Update. IAEA – TECDOC-1531.
  10. Seregin A.S., Kislicina T.S., Tsiboulya A.M. Annotacija kompleksa programm TRIGEX.04 [Abstract complex programs TRIGEX.04]: IPPE Preprint -2828]. Obninsk, FEI Publ., 2000 (in Russian).
  11. MMKK. Attestacionnyj pasport programmnogo sredstva [A certification passport software tool] Reg. № 314. Oct 09 2012 (in Russian).
  12. Manturov G.N., Nikolaev M.N., Tsiboulya A.M. Sistema gruppovyh konstant BNAB 93 [The system of group constant ABBN 93]. VANT, ser. Yadernye konstanty. 1995, iss.1 (in Russian).
  13. Manturov G.N., Nikolaev M.N., Tsiboulya A.M. Programma podgotovki konstant CONSYST. Opisanie primeneniya: Preprint GNC RF-FEI-2828. [CONSYST code for neutron constants preparation. Scope statement: IPPE Preprint -2828]. Obninsk. FEI Publ., 2000 (in Russian).
  14. Zabud’ko L.M. Opyt jekspluatacii i problemy raschetnogo obosnovanija plotnyh vidov topliva. [Operating experience and problems of calculation justification beach fuels]. In «Aktual’nye problemy razrabotki i proizvodstva jadernogo topliva» [Proc. Actual problems of development and production of nuclear fuel], 08–11 Nov 2010. Moscow. MIFI Publ., 2010, pp. 138-159 (in Russian).
  15. Chernyj V.A., Demeneva I.V., Stogov V.Ju. Raschetnye issledovaniya dlya obosnovaniya povy-sheniya plotnosti potoka nejtronov reaktora MBIR. In «Bezopasnost’ issledovatel’skih yadernyh ustanovok», May 26–30 2014. Dimitrovgrad. AO «GNC NIIAR» Publ., 2014, pp. 35-36 (in Russian).
  16. Chernyj V.A., Kochetkov L.A., Bur’evskij I.V., Stogov V.Ju. Povyshenie plotnosti potoka nejtronov v mnogocelevom bystrom issledovatel’skom reaktore. Izvestia Visshikh Uchebnikh Zavedeniy. Yadernaya Energetika. 2013, no. 3, pp. 117-123 (in Russian).
  17. Klinov A.V. O celesoobraznosti i tehnicheskoj vozmozhnosti povysheniya plotnosti potoka nejtronov v issledovatel’skih reaktorah. Dimitrovgrad. FGUP «GNC NIIAR» Publ., 2003 (in Russian).
  18. Zajko I.V., Levchenko M.O., Lopatkin A.V. Nejtronno-fizicheskie osobennosti aktivnoj zony MBIR. Atomnaya energiya. 2013, v. 114, no. 4, pp. 188-191 (in Russian).

multipurpose research sodium cooled fast reactor (MBIR) metalic fuel nitride fuel MOX fuel maximum neutron flux