Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

The dependence of the nuclide composition of the fuel core loaing from multiplying and breeding properties of the nuclear facility KLT-40S

3/28/2016 2016 - #02 Physics and technology of nuclear reactors

Baybakov D.F. Godovykh A.V. Martynov I.S. Nesterov V.N.

DOI: https://doi.org/10.26583/npe.2016.2.10

UDC: 621.039.543

The paper describes a method of determining the effective neutron multiplication factor and the factor of reproduction of nuclear fuel for KLT-40S in the operating parameters.

The main design features of the reactor necessary for the calculation. It is shown that the type of reproducing nuclides has virtually no effect on the formation of the spectrum of the neutron flux density. The contributions of each group of neutrons in the fission reaction rate at the design fissile nuclide content of 18.6%. The dependence of the average values of the macroscopic fission crosssections, for the absorption of fissile nuclides and radiation capture nuclides to reproduce the content of the fissile nuclide in nuclear fuel. Averaging carried out on sections of the spectrum of the neutron flux density.

As a result, obtained according to the effective neutron multiplication factor and the coefficient of the nuclear fuel reproduction of the content of the fissile isotope for different fuel compositions of uranium and thorium cycles at the beginning of the campaign KLT-40S.

It is shown that in terms of the effective multiplication factor when the content of the fissile isotope than 5% the best result of the composition 232Th + 233U, 5% – of the composition 238U + 239Pu.

From the point of view of the reproduction rate while the content of the fissile isotope to 10% of the best results in the composition 232Th + 235U, over 10% of its value is relatively the same for compositions 232Th + 233U, 232Th + 235U and 238U + 235U.

Thus, the most effective in the beginning of the campaign is the fuel composition 232Th + 233U to 233U nuclide content of more than 5% due to very high values of the effective neutron multiplication factor.

References

  1. Alekseev P.N., Udyansky Y.N., Subbotin S.A., Shchepetina T.D. Shchepetina T.D. Zadachi atomnyh stancij maloj moshhnosti v jenergoobespechenii [Tasks small nuclear power plants in power supply]. Atomnaya energiya. 2007, v. 102, no. 4, pp. 203–208 (in Russian).
  2. Sarkisov A.A. Novoe napravlenie razvitija – jadernaja jenergetika maloj moshhnosti [The new direction of development – low power nuclear power industry]. Atomnaya energiya. 2011, v. 111, no. 5, pp. 243–245 (in Russian).
  3. Sidorenko V.A. Zadachi, problemy i vozmozhnosti sozdanija jadernoj jenergetiki maloj moshhnosti [Problems, challenges and opportunities of creating small nuclear power plants]. Atomnaya energiya. 2011, v. 111, no. 5, pp. 246–249 (in Russian).
  4. Andreeva-Andrievskaja L.N., Kuznecov V.P. Transportabel’nye jadernye jenergeticheskie ustanovki v mezhdunarodnom proekte INPRO [Transportable nuclear power plants in the international project INPRO]. Atomnaya energiya. 2011, v. 111, no. 5, pp. 273–276 (in Russian).
  5. Dragunov Ju.G.‚ Shishkin V.A., Grechko G.I., Gol’cov E.N. Malaja jadernaja jenergetika: zada-chi i otvety [Nuclear industry of small power: challenges and responses]. Atomnaya energiya. 2011, v. 111, no. 5, pp. 294–297 (in Russian).
  6. Lee K.-H., Kim M.-G, Lee J.I., Lee P.-S. Recent advances in Ocean Nuclear Power Plants. Energies. 2015, v. 8, no. 10, pp. 11470–11492.
  7. Ishekov A.G., Klinov D.A., Smirnova L.S., Subbotin S.A., Shchepetina T.D. Analysis of the cost-effectiveness of low-capacity nuclear power plants. Atomic Energy. 2007, v. 102, no. 6, pp. 409–415.
  8. Carelli M.D., Petrovic B., Mycoff C.W., Trueco P., Ricotti, M.E., Locatelli G. Smaller sized reactors can be economically attractive. Societe Francaise d’Energie Nucleaire – International Congress on Advances in Nuclear Power Plants – ICAPP 2007, “The Nuclear Renaissance at Work”. 2008, v. 5, pp. 3140–3145.
  9. Kostin V.I., Panov Yu.K., Polunichev V.I., Shamanin I.E. Floating power-generating unit with a KLT-40S reactor system for desalinating sea water. Atomic Energy. 2007, v. 102, no. 1, pp. 31–35.
  10. Belyayev V., Leontyev K. Reactor out to sea. Nuclear Engineering International. 2004, v. 49, no. 594, pp. 18–20.
  11. Makarov V.I., Pologikh B.G., Khlopkin N.S., Mitenkov F.M., Panov Yu.K., Polunichev V.I., Yakovlev O.A. Experience in building and operating reactor systems for civilian ships. Atomic Energy. 2001, v. 89, no. 3, pp. 691–700.
  12. Bartolomej G.G., Bat’ G.A., Bajbakov V.D., Altuhov M.S. Pod red. Batja G.A. Osnovy teorii i metody rascheta jadernyh jenergeticheskih reaktorov. [Basic theory and methods for calculation of nuclear power reactors]. Moscow. Energoizdat Publ., 1982. 511 p. (in Russian).
  13. Golovackij A.V., Nesterov V.N., Shamanin I.V. Organizacija iteracionnogo processa pri chislennom vosstanovlenii spektra nejtronov v razmnozhajushhej sisteme s grafitovym zamedlitelem [Organization of the iterative process for the numerical reconstruction of the spectrum of neutrons in multiplying system with graphite-moderated]. Izvestija vuzov. Fizika. 2010, v. 53, no. 11, pp. 10–14 (in Russian).
  14. Abagyan L.P., Bazazyants N.O., Bondarenko I.I., Nikolaev M.N. Gruppovye konstanty dlja raschjota jadernyh reaktorov [Group constants for calculating nuclear reactors]. Moscow. Atomizdat Publ., 1964. 139 p. (in Russian).
  15. Ganev I.H. Fizika i raschet reaktora. Under the total. Ed. Dollezhal N.A. [Physics and reactor caculation: Textbook for universities. – 2nd ed.]. Moscow. Energoatomizdat Publ., 1992. 496 p. (in Rusian).
  16. Vatulin A.V. Razrabotka aktivnyh zon plavuchih jenergoblokov (PJeB) i atomnyh stancij maloj moshhnosti (ASMM): sostojanie i perspektivy [The development of the active zones of floating power unit and the nuclear power station (LCNPP): Status and Prospects]. Dimitrovgrad, 7-th Russian Conference on Reactor Materials, 2003 (in Russian).
  17. Kulakov G.V., Vatulin A.V., Ershov S.A., Konovalov Y.V., Morozov A.V., Sorokin V.I., Fedotov V.V., Shishin V.Y., Ovchinnikov V.A. Particulars of the Behavior Under Irradiation of Dispersion Fuel Elements with the Uranium Dioxide + Aluminum Alloy Fuel Composition. Atomic Energy. 2015, v. 117, no. 4, pp. 251–256.
  18. Shamanin I.V., Bedenko S.V., Godovykh A.V. Vlijanie tonkoj struktury rezonansnoj oblasti pogloshhenija nejtronov jadrami 232Th i 238U na jeffektivnost’ ispol’zovanija jadernogo topliva [Influence of the fine structure of the resonance region of the absorption of neutrons by nuclei 232Th and 238U in the efficient use of fuel]. Izvestiya vuzov. Fizika. 2012, v. 55, no. 11/2, pp. 367–372 (in Russian).
  19. Shamanin I.V., Bedenko S.V., Gubaydulin I.M. Vnutrennij blok-jeffekt v uran-i to rijsoderzhashhih razmnozhajushhih sistemah [Inner block effect in uranium and thorium breeder system]. Izvestiya vuzov. Fizika. 2013, v. 56, no.11/2, pp. 59–66 (in Russian).
  20. Shamanin I., Bedenko S., Gubaydulin I. Advantages of thorium nuclear fuel for thermal- neutron reactor. Advanced Materials Research. 2015, v. 1084, pp. 275–279.

KLT-40S the effective multiplication factor reproduction rate the uranium fuel cycle thorium fuel cycle

Link for citing the article: Baybakov D.F., Godovykh A.V., Martynov I.S., Nesterov V.N. The dependence of the nuclide composition of the fuel core loaing from multiplying and breeding properties of the nuclear facility KLT-40S. Izvestiya vuzov. Yadernaya Energetika. 2016, no. 2, pp. 99-111; DOI: https://doi.org/10.26583/npe.2016.2.10 (in Russian).