Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Development of the code CYCLE for nuclear fuel cycle analysis

3/28/2016 2016 - #01 Fuel cycle and nuclear waste management

Kalashnikov A.G. Moseev A L. Dekusar V.M. Korobeynikov V.V. Moseev P.A.

DOI: https://doi.org/10.26583/npe.2016.1.10

UDC: 621.039

The software package CYCLE was designed for mathematical modeling of the nuclear fuel cycle, the development of scenarios efficient development of nuclear power in Russia and for analysis of global trends in the nuclear power industry. It is based on well known tool - WIMSD-5B widely used for the thermal reactor cells calculations and on the two - dimensional multigroup code - RZA for the fast reactor simulation. The code CYCLE was designed in the State Scientific Center of RF «Institute for Physics and Power Engineering (IPPE)», Obninsk. The first phase of the code CYCLE options is in the paper [1]. This paper contains the short review of computer code CYCLE possibilities. This code allows to model the main fuel cycle facilities (fabrication and reprocessing, spent nuclear fuel interim storage, stocks of uranium, plutonium, neptunium, americium, curium and final repository), thermal and fast nuclear reactors, including RBMK-1000, current and advanced VVER (with different fuel types, i.e. UOX, MOX), FBRs (current and innovative). The important feature of code CYCLE is the careful consideration of the evolution of the fuel composition inside of the reactors and on the outside stages of fuel cycle. The additional option of the code is the calculation of certain cost parameters of the closed nuclear fuel cycle for nuclear power plants with fast and thermal reactors. For many years this code has been successfully used in the international research project on Innovative Nuclear Reactors and Fuel Cycles - INPRO. The calculation results of modeling studies of Russian NPP development scenarios with time variation of introduction of fast reactors into nuclear energy system were presented at Global-2011 conference. Some other simulation results with code CYCLE were presented at the Global-2015 conference.

Ссылки

  1. Dekusar V.M., Kagramanyan V.S., Kalashnikov A.G., Korobeynikov V.V., Korobitsyn V.E., Klinov D.A. Razrabotka matematicheskoj modeli toplivnogo cikla atomnoj energetiki, sostoyaschej iz teplovyh i bystryh reaktorov. [Development of Mathematical Models of Nuclear Fuel Cycle Consisting of Thermal and Fast Reactors]. Izvestia vuzov. Yadernaya energetika. 2010, no. 4, pp. 119-132 (in Russian).
  2. Yacenko A.M., Chebeskov A.N., Kagramanyan V.S., Kalashnikov A.G. Metodika ekvivalentirovaniya plutoniya razlichnogo izotopnogo sostava primenitel’no k sistemnym issledovaniyam v atomnoj energetike. [Methods Equivalenting Various Plutonium Isotope Compositions in Relation to System Research in Nuclear Energy]. Izvestia vuzov. Yadernaya energetika. 2012, no. 1, pp. 31-41 (in Russian).
  3. Artem’ev N.I., Dekusar V.M., Kalashnikov A.G., Moseev A.L. RZA – kompleks programm mnogogruppovogo raschyota dvumernogo reaktora v oblastyah zamedleniya i termalizacii nejtronov s uchetom vygoraniya. [2D Multigroup Burnup Code RZA]. Preprint SSC RF-IPPE-1679, Obninsk, 1985 (in Russian).
  4. NEA-1507, WIMSD5, Deterministic Multigroup Reactor Lattice Calculations. Available at http://www.oecd-nea.org/tools/abstract/detail/nea-1507/
  5. WIMS-D library update: final report of a coordinated research project. Vienna. International Atomic Energy Agency Publ., 2007.
  6. Moseev P.A., Korobejnikov V.V., Moseev A.L. Optimizaciya upravleniya skladskimi zapasami plutoniya v zamknutom toplivnom cikle s reaktorami na teplovyh i bystryh nejtronah. [Optimization of plutonium stores for closed nuclear fuel cycle with thermal and fast nuclear reactors]. Izvestia vuzov. Yadernaya energetika. 2013, no. 2, pp. 123-132 (in Russian).
  7. Ekonomika yadernogo toplivnogo cikla. [THE ECONOMICS OF THE NUCLEAR FUEL CYCLE]. OESR / AYaE. Moscow. Inform-Atom Publ., 1999 (in Russian).
  8. Dekusar V.M., Kolesnikova M.S., Chizhikova Z.N.. Metodika i programma raschyota toplivnoj sostavlyajuschej stoimosti proizvodstva elektroenergii na AES s teplovymi i bystrymi reaktorami. [Method and Code for Electricity Fuel Cost Calculation at NPPs with Fast and Thermal Reactors]. Preprint SSC RF-IPPE-3243, Obninsk, 2014 (in Russian).
  9. INTERNATIONAL ATOMIC ENERGY AGENCY, Guidance for the Application of an Assessment Methodology for Innovative Nuclear Energy Systems, INPRO Manual–– Economics, Volume 2 of the Final Report of Phase 1 of the International Projection Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEA-TECDOC-1575/Rev.1, Vienna (2008).
  10. Kagramanyan V., Poplavskaya E., Korobeynikov V., Kalashnikov A., Moseev A., Korobitsyn V. Analysis of Russian Transition Scenarios to Innovative Nuclear Energy System Based on Thermal and Fast Reactors with Closed Nuclear Fuel, Global 2011, Makuhari Messe, Chiba, Japan, December 11-16, 2011.
  11. Egorov A.F., Kalashnikov A.G., Korobejnikov V.V., Korobitsyn V.E., Moseev A.L., Moseev P.A., Poplavskaya E.V. Sravnenie rezul’tatov modelirovaniya razvitiya yadernoj energetiki Rossii s pomosch’yu programmnyh kompleksov CYCLE i MESSAGE. [The Comparative Analysis of Models of Nuclear Power Development in Russia Using CYCLE and MESSAGE Codes]. VANT. Ser. Fizika yadernyh reaktorov, 2013, v. 2, pp. 84-91 (in Russian).
  12. Dekusar V.M., Egorov A.F., Kalashnikov A.G., Korobejnikov V.V., Korobicyn V.E., Moseev A.L., Moseev P.A. Modelirovanie raboty mezhdunarodnogo jadernogo toplivnogo centra po predostavleniju uslug stranam blizhnego zarubezh’ja. [Simulation of the International Nuclear Fuel Center Operation]. Izvestia vuzov. Yadernaya energetika. 2014, no. 1, pp. 121-132 (in Russian).
  13. Kagramanyan V., Usanov V., Kalashnikov A., Kvyatkovskii S. «Medium-term Nuclear Industry Prospects Associated with Synergistic LWR/SFR System and Related Closed Nuclear Fuel Cycle», Proceedings of Global 2015, Paris (France), September 20-24, 2015, Paper 5115.

nuclear fuel cycle simulation computer code scenario fast reactor enrichment isotopic composition plutonium equivalence function storage storage topology