Izvestiya vuzov. Yadernaya Energetika

The peer-reviewed scientific and technology journal. ISSN: 0204-3327

Software for radionuclide vertebroplasty

5/11/2014 2014 - #03 Application of nuclear tech

Levchenko A.V. Zabaryansky Yu.G. Golovin А.А. Voznesensky N.K. Kurachenko Yu.A.

DOI: https://doi.org/10.26583/npe.2014.3.06

UDC: 615.849.1:536.2.023:519.688

The problem of program maintenance for radionuclide vertebroplasty is considered. Requirements for systems of preoperative preparation and postoperative analysis are described. The object domain (the vertebra being operated on and its vicinity) is modelled with the use of CT scans in two ways, namely, a) precisely, on the basis of voxel representation and b) approximately, for use in on-line interactive calculations.

The voxel model is made in two versions: for dose and temperature calculation. The MCNP code is applied for dose calculation. Selection of radionuclides is carried out in serial calculations; the most suitable “candidates” are identified for application in this procedure based on a set of characteristics.

A code was developed which allows solving online both the «direct» problem (dose calculation close to the bone cement being entered at a preselected radionuclide activity), and the «inverse» one (calculation of necessary radionuclide activity to be entered in a specific localization near the cement “kernel” which will produce a specified dose).

Calculations of the temperature fields caused by polymerization of bone cement are made by means of the thermohydraulic codes applied for nuclear reactor design calculation; these codes are adapted for use in vertebroplasty on the basis of the problem-oriented experiments performed.

Using well-established methodologies for assessing synergistic effects of radiation and heating on tissue, “amplifier gains” for beam influence were obtained, and areas of radical and palliative therapeutic effects for specific vertebroplasty conditions are defined.

The beta version of the code for radionuclide vertebroplasty planning is created on the basis of combined experimental and computational data.

References

  1. Galibert P., Deramond H., Rosat P. et al. Note pre’liminaire sur le traitement des angiomes vertebraux par vertebroplastic acrylique percutanee. Neurochirurgie. 1987, v. 33, pp. 166 -168. (in French).
  2. Voznesensky N.K., Mardinsky Yu.S., Kurachenko Yu.A., Matusevich Eu.S., Voznesenskaya N.N. Dozimetricheskoe planirovanie i vybor radionuklida dlya radionuklidnoj vertebroplastiki pri metastaticheskom porazhenii tel pozvonkov [Dosimetry planning and radionuclide selection for radionuclide vertebroplasty at metastases in vertebra body]. Medicinskaya fizika. 2012, no. 1, pp. 34–39. (in Russian).
  3. Voznesensky N.K., Kurachenko Yu.A., Mardinsky Yu.S., Matusevich Eu.S., Voznesenskaya N.N. Radionuklidnaya vertebroplastika pri metastazah v pozvonochnike [Radionuclide vertebroplasty for metastases in a vertebra]. Medicinskaya radiologiya i radiatzionnaya bezopasnost’. 2012, v. 57, no. 3, pp. 39-43. (in Russian).
  4. Kurachenko Yu.A., Moiseenko D.N. Voksel’nye fantomy v zadachah medicinskoj fiziki [Voxel phantoms in medical physics’ problems]. Medicinskaya fizika. 2012, no. 3, pp. 27–34. (in Russian).
  5. Voznesensky N.K., Dorokhovich S.L., Zabaryansky Yu.G., Kurachenko Yu.A., Mardinsky Yu.S., Matusevich Eu.S., Bogdanov V.N., Levchenko A.V., Voznesenskaya N.N. Modelirovanie gipertermii pri stabiliziruyuschei vertebroplastike [Modeling of Hyperthermia at Stabilizing Vertebroplasty]. Izvestiya vuzov. Yadernaya energetika. 2013, no. 1, pp. 133 – 143. (in Russian).
  6. MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. Volume I: Overview and Theory. Authors: X-5 Monte Carlo Team. LA-UR-03-1987. 2003.
  7. Overgaard. J. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int. J. Radiation Oncology Biol. Phys. 1980, v. 6, pp. 1507-1517.
  8. Himmel’blau D. Prikladnoe nelinejnoe programmirovanie [David M. Himmelblau. Applied Nonlinear Programming]. Moscow. MIR, 1975. (in Russian).

radionuclide vertebroplasty synergism of irradiation and heating at bone cement polimerization voxel models codes for dose and temperature computation radiation therapy planning