Известия вузов. Ядерная энергетика

Рецензируемый научно-технический журнал. ISSN: 0204-3327

Методы обнаружения неисправностей оборудования АЭС

05.12.2019 2019 - №04 Актуальные проблемы ядерной энергетики

Ю.Д. Кацер В.О. Козицин И.В. Максимов

DOI: https://doi.org/10.26583/npe.2019.4.01

УДК: 621.039.588

Повышение требований к надежности и экономической эффективности работы АЭС ведет к росту востребованности современных решений основных задач диагностирования неисправностей оборудования: обнаружения, локализации, определения причин и прогнозирования развития неисправностей. Современные решения на основании статистического анализа, методов машинного обучения, интеллектуальной обработки сигналов и других успешно внедрены во многих отраслях промышленности, где доказали свою эффективность, сокращая расходы на ремонт и обслуживание оборудования.

Проведен анализ методов, применяемых для решения задач обнаружения неисправностей и отклонений в работе оборудования АЭС. Приводится классификация и сравнение наиболее распространенных методов обнаружения неисправности, дается описание, приводятся преимущества и недостатки методов и требования к входным данным.

Результатом работы является обобщение методов обнаружения, позволяющее упростить их выбор для решения конкретной задачи. Приведен обзор источников литературы, даны ссылки на работы с теоретическим описанием методов и примерами промышленного применения.

Ссылки

  1. Аркадов Г.В., Павелко В.И., Финкель Б.М. Системы диагностирования ВВЭР. – М.: Энергоатомиздат, 2010. – 391 с.
  2. Аркадов Г.В., Егоров С.В., Кацер Ю.Д. и др. Предиктивная аналитика и диагностика АЭС. – М.: Диапром, 2019. – 72 с.
  3. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants. Nuclear Energy Series no. NP-T-3.14. – Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2013. Электронный ресурс: https://www.iaea.org/publications/8763/advanced-surveillance-diagnostic-and-prognostic-techniques-in-monitoring-structures-systems-and-components-in-nuclear-power-plants (дата доступа: 20.07.2019).
  4. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. – Springer New York, 2009. – 745 p.
  5. Chiang L. H., Russell E. L., Braatz R. D. Fault Detection and Diagnosis in Industrial Systems. – Springer London, 2001. – 279 p.
  6. Venkatasubramanian V., Rengaswamy R., Kavuri S. N. A review of process fault detection and diagnosis // Computers & Chemical Engineering. – 2003. – Vol. 27. – No. 3. – PP. 313-326.
  7. Venkatasubramanian V., Raghunathan R., Kavuri S. N. et al. A review of process fault detection and diagnosis: Part III: Process history based methods // Computers & chemical engineering. – 2003. – Vol. 27. – No. 3. – PP. 327-346.
  8. Qin S. J. Data-driven Fault Detection and Diagnosis for Complex Industrial Processes // IFAC Proceedings Volumes. – 2009. – Vol. 42. – No. 8. – PP. 1115–1125.
  9. Ma J., Jiang J. Applications of fault detection and diagnosis methods in nuclear power plants: A review // Progress in Nuclear Energy. – 2011. – Vol. 53. – No. 3. – PP. 255-266.
  10. Si Xiao-Sheng, Wang Wenbin, Hu Chang-Hua et al. Remaining useful life estimation – A review on the statistical data driven approaches // European Journal of Operational Research. – 2011. – Vol. 213. – No. 1. – PP. 1-14.
  11. An Dawn, Choi Joo Ho, Kim Nam Ho. Options for Prognostics Methods: A review of data-driven and physics-based prognostics. / Proc. of the 54-th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. – American Institute of Aeronautics and Astronautics, 2013.
  12. Dai Xuewu, Gao Zhiwei. From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis // IEEE Transactions on Industrial Informatics. – 2013. – Vol. 9. – No. 4. – PP. 2226-2238.
  13. Aminikhanghahi S., Cook D. J. A survey of methods for time series change point detection // Knowledge and Information Systems. – 2016. – Vol. 51. – No. 2. – PP. 339-367.
  14. Patel Himanshukumar R, Shah Vipul A. Fault Detection and Diagnosis Methods in Power Generation Plants-The Indian Power Generation Sector Perspective: An Introductory Review // PDPU Journal of Energy and Management. – 2018. – Vol. 2. – No. 2. – PP. 31-49.
  15. ГОСТ Р ИСО 13381-1 – 2016. Контроль состояния и диагностика машин. Прогнозирование технического состояния. Часть 1. Общее руководство. – М.: Стандартинформ, 2017. – 24 с.
  16. Chandola V., Banerjee A., Kumar V. Anomaly detection // ACM Computing Surveys. – 2009. – Vol. 41. – No. 3. – PP. 1-58.
  17. Ayo-Imoru R.M., Cilliers A.C. A survey of the state of condition-based maintenance (CBM) in the nuclear power industry // Annals of Nuclear Energy. – 2018. – Vol. 112. – PP. 177-188.
  18. Ивановский Р. И. Теория вероятностей и математическая статистика. Основы, прикладные аспекты с примерами и задачами в среде MathCad. – БХВ-Петербург, 2008. – 528 с.
  19. Wald A. Sequential analysis. – Courier Corporation, 1973. – 213 p.
  20. Hines J. W., Garvey D. Development and Application of Fault Detectability Performance Metrics for Instrument Calibration Verification and Anomaly Detection // Journal of Pattern Recognition Research. – 2006. – Vol. 1. – No. 1. – PP. 2–15.
  21. Xin Jin, Yin Guo, Soumik Sarkar et al. Anomaly Detection in Nuclear Power Plants via Symbolic Dynamic Filtering // IEEE Transactions on Nuclear Science. – 2011. – Vol. 58. – No. 1. – PP. 277-288.
  22. Di Maio F., Baraldi P., Zio E. et al. Fault Detection in Nuclear Power Plants Components by a Combination of Statistical Methods // IEEE Transactions on Reliability. – 2013. – Vol. 62. – No. 4. – PP. 833-845.
  23. Tartakovsky A., Nikiforov I., Basseville M. Sequential analysis: Hypothesis testing and changepoint detection. – Chapman and Hall/CRC, 2014. – 575 p.
  24. Montgomery D. C. Introduction to statistical quality control. – John Wiley & Sons, 2007. – 752 p.
  25. ГОСТ Р ИСО 7870-1-2011 Статистические методы. Контрольные карты. Часть 1. Общие принципы. ИСО 7870-1-2011. – М.: Стандартинформ, 2011. – 16 с.
  26. Qin S. J. Statistical process monitoring: basics and beyond // Journal of Chemometrics. – 2003. – Vol. 17. – No. 8-9. – PP. 480-502.
  27. Mujica L.E., Rodellar J., Fernandez A. et al. Q-statistic and T2-statistic PCA-based measures for damage assessment in structures // Structural Health Monitoring: An International Journal. – 2010. – Vol. 10. – No. 5. – PP. 539-553.
  28. Zhao C., Gao F. Online fault prognosis with relative deviation analysis and vector autoregressive modeling // Chemical Engineering Science. – 2015. – Vol. 138. – PP. 531-543.
  29. Li Wei, Peng Minjun, Wang Qingzhong. False alarm reducing in PCA method for sensor fault detection in a nuclear power plant // Annals of Nuclear Energy. – 2018. – Vol. 118. – PP. 131-139.
  30. Ge Zhiqiang, Zhang Muguang, Song Zhihuan. Nonlinear process monitoring based on linear subspace and Bayesian inference // Journal of Process Control. – 2010. – Vol. 20. – No. 5. – PP. 676-688.
  31. Xu Chen, Zhao Shunyi, Liu Fei. Distributed plant-wide process monitoring based on PCA with minimal redundancy maximal relevance // Chemometrics and Intelligent Laboratory Systems. – 2017. – Vol. 169. – PP. 53-63.
  32. Yang Hsu-Hao, Huang Mei-Ling, Yang Shih-Wei. Integrating Auto-Associative Neural Networks with Hotelling T2 Control Charts for Wind Turbine Fault Detection // Energies. – 2015. – Vol. 8. – No. 10. – PP. 12100-12115.
  33. Hongjun Xiao, Daoping Huang, Yongping Pan et al. Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model // Chemometrics and Intelligent Laboratory Systems. – 2017. – Vol. 161. – PP. 96-107.
  34. Encyclopedia of Mass Spectrometry. – Elsevier, 2015. Электронный ресурс: https://www.ebook.de/ de/product/24358562/encyclopedia_of_mass_spectrometry.html (дата доступа: 20.07.2019).
  35. Ferrer-Riquelme A.J. Statistical Control of Measures and Processes // Comprehensive Chemometrics. – Elsevier, 2009. – PP. 97-126.
  36. Lucas J.M., Crosier R.B. Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM A Head Start // Technometrics. – 1982. – Vol. 24. – No. 3. – PP. 199-205.
  37. Paul W.L., Barnett N.S. Control charting instrumental analyses // Laboratory Automation & Information Management. – 1995. – Vol. 31. – No. 2. – PP. 141-148.
  38. Simpson J.R., Keats J.B. Sensitivity study of the CUSUM control chart with an economic model // International Journal of Production Economics. – 1995. – Vol. 40. – No. 1. – PP. 1-19.
  39. Wu Chunjie, Yu Miaomiao, Zhuang Fang. Properties and enhancements of robust likelihood CUSUM control chart // Computers & Industrial Engineering. – 2017. – Vol. 114. – PP. 80-100.
  40. Fortea-Sanchis C., Escrig-Sos J. Quality Control Techniques in Surgery: Application of Cumulative Sum (CUSUM) Charts // Cirugia Espanola (English Edition). – 2019. – Vol. 97. – No. 2. – PP. 65-70.
  41. Bodnar O., Schmid W. CUSUM charts for monitoring the mean of a multivariate Gaussian process // Journal of Statistical Planning and Inference. – 2011. – Vol. 141. – No. 6. – PP. 2055-2070.
  42. Ferrer-Riquelme A.J. Statistical Control of Measures and Processes // Comprehensive Chemometrics. – Elsevier, 2009. – PP. 97-126.
  43. Tobias P.A. Statistical Process Control and Failure Mode Analysis // Encyclopedia of Materials: Science and Technology. – Elsevier, 2001. – PP. 8816-8824.
  44. Sevil Senturk, Nihal Erginel, Ihsan Kaya, Cengiz Kahraman. Fuzzy exponentially weighted moving average control chart for univariate data with a real case application // Applied Soft Computing. – 2014. – Vol. 22. – PP. 1-10.
  45. Haq Abdul, Khoo Michael B.C. An adaptive multivariate EWMA chart // Computers & Industrial Engineering. – 2019. – Vol. 127. – PP. 549-557.
  46. Haq Abdul, Khoo Michael B.C. New adaptive EWMA control charts for monitoring univariate and multivariate coefficient of variation // Computers & Industrial Engineering. – 2019. – Vol. 131. – PP. 28-40.
  47. Park Jangho, Jun Chi-Hyuck. A new multivariate EWMA control chart via multiple testing // Journal of Process Control. – 2015. – Vol. 26. – PP. 51-55.
  48. Brodsky B.E, Darkhovsky B.S. Nonparametric methods in change point problems. – Springer Science & Business Media, 2013. – 210 p.
  49. Chen Jie, Gupta Arjun K. Parametric statistical change point analysis: with applications to genetics, medicine, and finance. – Springer Science & Business Media, 2011. – 273 p.
  50. Kawahara Y., Sugiyama M. Sequential change-point detection based on direct density-ratio estimation // Statistical Analysis and Data Mining. – 2011. – Vol. 5. – No. 2. – PP. 114-127.
  51. Garreau D. Change-point detection and kernel methods: Ph.D. thesis / PSL Research University. – 2017. – 144 p.
  52. Truong C., Oudre L., Vayatis N. Selective review of offline change point detection methods. – 2019. Электронный ресурс: https://arxiv.org/abs/1801.00718 (дата доступа: 23.07.2019).
  53. Lai Tze Leung. Sequential Changepoint Detection in Quality Control and Dynamical Systems // Journal of the Royal Statistical Society: Series B (Methodological). – 1995. – Vol.
  54. – No. 4. – PP. 613-644.
  55. Marcos F.S.V. D’Angelo, Reinaldo M. Palhares, Ricardo H.C. Takahashi et al. Incipient fault detection in induction machine stator-winding using a fuzzy-Bayesian change point detection approach // Applied Soft Computing. – 2011. – Vol. 11. – No. 1. – PP. 179-192.
  56. Niculita Octavian, Skaf Zakwan, Jennions Ian K. The Application of Bayesian Change Point Detection in UAV Fuel Systems // Procedia CIRP. – 2014. – Vol. 22. – PP. 115-121.
  57. Zavaljevski N., Gross K. C. Sensor fault detection in nuclear power plants using multivariate state estimation technique and support vector machines. / Proc. of the III-rd International Conference of the Yugoslav Nuclear Society YUNSC 2000. – 2000.
  58. Hines J Wesley, Usynin Alexander. MSET performance optimization through regularization // Nuclear Engineering and Technology. – 2005. – Vol. 37. – No. 2. – PP. 177-184.
  59. Sanchez-Fernandez A., Baldan F.J., Sainz-Palmero G.I. et al. Fault detection based on time series modeling and multivariate statistical process control // Chemometrics and Intelligent Laboratory Systems. – 2018. – Vol. 182. – PP. 57–69.
  60. Filonov P., Lavrentyev A., Vorontsov A. Multivariate Industrial Time Series with Cyber-Attack Simulation: Fault Detection Using an LSTM-based Predictive Data Model // NIPS Time Series Workshop 2016, Barcelona, Spain. – 2016. Электронный ресурс: https://arxiv.org/abs/1612.06676 (дата доступа: 20.07.2019).
  61. Bishop C. M. Pattern Recognition and Machine Learning. – Springer-Verlag New York Inc., 2006. Электронный ресурс: https://www.ebook.de/de/product/5324937/christopher_m_bishop_pattern_recognition_and_machine_learning.html (дата доступа: 20.07.2019).
  62. Brockwell P. J, Davis R. A, Calder M. V. Introduction to time series and forecasting. – Springer, 2002. – Vol. 2. – 434 p.
  63. Chatfield C. The Holt-Winters Forecasting Procedure // Applied Statistics. – 1978. – Vol. 27. – No. 3. – P. 264.
  64. Tratar Liljana Ferbar, Strmcnik Ervin. The comparison of Holt–Winters method and Multiple regression method: A case study // Energy. – 2016. – Vol. 109. – PP. 266-276.
  65. Gers F.A. Learning to forget: continual prediction with LSTM / Proc. of the IX-th International Conference on Artificial Neural Networks: ICANN 99. – IEE, 1999.
  66. Klaus Greff, Rupesh K. Srivastava, Jan Koutnik et al. LSTM: A Search Space Odyssey // IEEE Transactions on Neural Networks and Learning Systems. – 2017. – Vol. 28. – No. 10. – PP. 2222-2232.
  67. ГОСТ Р ИСО 13379-1–2015. Контроль состояния и диагностика машин. Методы интерпретации данных и диагностирования. Общее руководство. Часть 1. – М.: Стандартинформ, 2015. – 34 с.
  68. Lu B., Upadhyaya B.R. Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis // Annals of Nuclear Energy. – 2005. – Vol. 32. – No. 9. – PP. 897-912.
  69. Guangrong L., Xiaohua H., Xiajiong S. et al. A novel unsupervised feature selection method for bioinformatics data sets through feature clustering / Proc. of the 2008 IEEE International Conference on Granular Computing . – IEEE. – 2008. – PP. 41-47.
  70. Hajjem A., Bellavance F., Larocque D. Mixed-effects random forest for clustered data // Journal of Statistical Computation and Simulation. – 2012. – Vol. 84. – No. 6. – PP. 1313-1328.
  71. Mohammad Hamed Ardakani, Ahmed Shokry, Gerard Escudero et al. Unsupervised Automatic Updating of Classification Models of Fault Diagnosis for Novelty Detection // Computer Aided Chemical Engineering. – Elsevier, 2018. – PP. 1123-1128.
  72. Anderberg M.R. Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks. – Academic press, 2014. – Vol. 19.
  73. Bengio Y., Gingras F., Goulard B. et al. Gaussian mixture densities for classification of nuclear power plant data // Computers and artificial intelligence. – 1998. – Vol. 17. – No. 2-3. – PP. 189–209.
  74. Baraldi P., Razavi-Far R., Zio E. Bagged ensemble of Fuzzy C-Means classifiers for nuclear transient identification // Annals of Nuclear Energy. – 2011. – Vol. 38. – No. 5. – PP. 1161-1171.
  75. Скоморохов А. О. Многомерные статистические методы диагностики аномальных состояний ЯЭУ / Дис. д-ра. техн. наук: 05.14.03. – Обнинск, ИАТЭ НИЯУ МИФИ, 2011. – 302 с.
  76. Perasso A., Campi C., Toraci C. et al. Application of Possibilistic C-Means for Fault Detection in Nuclear Power Plant Data // Journal of Engineering for Gas Turbines and Power. – 2014. – Vol. 137. – No. 6. – P. 062901.
  77. Kulkowski K., Grochowski M., Kobylarz A. et al. Application of data driven methods in diagnostic of selected process faults of nuclear power plant steam turbine // Polish Control Conference / Springer. – 2017. – PP. 631-640.
  78. Wang Bing, Hu Xiong, Li Hongru. Rolling bearing performance degradation condition recognition based on mathematical morphological fractal dimension and fuzzy C-means //Measurement. – 2017. – Vol. 109. – PP. 1-8.
  79. Liu Fei Tony, Ting Kai Ming, Zhou Zhi-Hua. Isolation Forest / Proc. of the 2008 Eighth IEEE International Conference on Data Mining. – IEEE, 2008.
  80. Sun L., Versteeg S., Boztas S. et al. Detecting Anomalous User Behavior Using an Extended Isolation Forest Algorithm: An Enterprise Case Study – 2016. Электронный ресурс: https://arxiv.org/abs/1609.06676 (дата доступа: 20.07.2019).
  81. Tan Swee Chuan, Ting Kai Ming, Liu Tony Fei. Fast anomaly detection for streaming data // Twenty-Second International Joint Conference on Artificial Intelligence. – 2011.
  82. Ding Zhiguo, Fei Minrui. An Anomaly Detection Approach Based on Isolation Forest Algorithm for Streaming Data using Sliding Window // IFAC Proceedings Volumes. – 2013. – Vol. 46. – No. 20. – PP. 12-17.
  83. Susto Gian Antonio, Beghi Alessandro, McLoone Sean. Anomaly detection through on-line isolation Forest: An application to plasma etching / Proc. of the XXVIII-th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). – IEEE, 2017.
  84. Wei Mao, Xiu Cao, Qinhua Zhou et al. Anomaly Detection for Power Consumption Data based on Isolated Forest / Proc. of the 2018 International Conference on Power System Technology (POWERCON). – IEEE, 2018.
  85. Sudipto Guha, Nina Mishra, Gourav Roy et al. Robust random cut forest based anomaly detection on streams // International conference on machine learning. – 2016. – PP. 2712-2721.
  86. Wo-Ruo Chen, Yong-Huan Yun, Ming Wen et al. Representative subset selection and outlier detection via isolation forest // Analytical Methods. – 2016. – Vol. 8. – No. 39. – PP. 7225-7231.
  87. Tax David M.J., Duin Robert P.W. Support Vector Data Description // Machine Learning. – 2004. – Vol. 54. – No. 1. – PP. 45-66.
  88. Jooyoung Park, Daesung Kang, Jongho Kim et al. SVDD-Based Pattern Denoising // Neural Computation. – 2007. – Vol. 19. – No. 7. – PP. 1919-1938.
  89. Chalapathy Raghavendra, Menon Aditya Krishna, Chawla Sanjay. Anomaly detection using one-class neural networks / arXiv preprint. – 2018. Электронный ресурс: https:// arxiv.org/abs/1802.06360v2 (дата доступа: 20.07.2019).
  90. Yong Zhang, Xiao-Dan Liu, Fu-Ding Xie et al. Fault classifier of rotating machinery based on weighted support vector data description // Expert Systems with Applications. – 2009. – Vol. 36. – No. 4. – PP. 7928-7932.
  91. Wang Xiaoming, lai Chung Fu, Wang Shitong. Theoretical analysis for solution of support vector data description // Neural Networks. – 2011. – Vol. 24. – No. 4. – PP. 360-369.
  92. Tax D, Ypma A., Duin R. Support vector data description applied to machine vibration analysis / Proc. of the V-th Annual Conference of the Advanced School for Computing and Imaging . – Citeseer. – 1999.– Vol. 54. – PP. 15-23.
  93. Ayodeji Abiodun, kuo Liu Yong. Support vector ensemble for incipient fault diagnosis in nuclear plant components // Nuclear Engineering and Technology. – 2018. – Vol. 50. – No. 8. – PP. 1306-1313.
  94. Vapnik V., Chapelle O. Bounds on Error Expectation for Support Vector Machines // Neural Computation. – 2000. – Vol. 12. – No. 9. – PP. 2013-2036.
  95. Banerjee Amit, Burlina Philippe, Meth Reuven. Fast Hyperspectral Anomaly Detection via SVDD / Proc. of the 2007 IEEE International Conference on Image Processing. – IEEE, 2007.
  96. DongDong Li, Zhe Wang, Chenjie Cao et al. Information entropy based sample reduction for support vector data description // Applied Soft Computing. – 2018. – Vol. 71. – PP. 1153-1160.
  97. Lin Chih-Jen. Formulations of support vector machines: a note from an optimization point of view // Neural Computation. – 2001. – Vol. 13. – No. 2. – PP. 307-317.
  98. Platt J.C. Fast training of support vector machines using sequential minimal optimization / Advances in Kernel Methods / Ed. by Bernhard Scholkopf, Christopher J.C. Burges, Alexander J. Smola. – Cambridge, MA, USA: MIT Press, 1999. – PP. 185-208. Электронный ресурс: http://dl.acm.org/citation.cfm?id=299094.299105 (дата доступа: 20.07.2019).
  99. Du Jia-Zhi, Lu Wei-Gang, Wu Xiao-He et al. L-SVM: A radius-margin-based SVM algorithm with LogDet regularization // Expert Systems with Applications. – 2018. – Vol. 102. – PP. 113-125.
  100. Takoua Kefi, Riadh Ksantini, Mohamed Becha Kaaniche et al. A novel incremental covariance-guided one-class support vector machine / Joint European Conference on Machine Learning and Knowledge Discovery in Databases. – Springer. – 2016. – PP. 17-32.
  101. Тулупьев А.Л., Николенко С.И., Сироткин А.В. Байесовские сети: логико-вероятностный подход. – М.: Наука, 2006. – 608 с.
  102. Finn B. Jensen Thomas Graven-Nielsen. Bayesian networks and decision graphs. Information Science and Statistics. – 2nd edition. – Springer, 2007. Электронный ресурс: http://gen.lib.rus.ec/book/index.php?md5=221D554B6699BF082377771696B32A6E (дата доступа: 20.07.2019).
  103. Santoso N.I., Darken C., Povh G. et al. Nuclear plant fault diagnosis using probabilistic reasoning / 199 IEEE Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.99CH36364). – IEEE, 2017.
  104. Cai Baoping, Huang Lei, Xie Min. Bayesian Networks in Fault Diagnosis // IEEE Transactions on Industrial Informatics. – 2017. – Vol. 13. – No. 5. – PP. 2227-2240.
  105. Lampis M., Andrews J. D. Bayesian belief networks for system fault diagnostics // Quality and Reliability Engineering International. – 2009. – Vol. 25. – No. 4. – PP. 409-426.
  106. Lerner Uri, Parr Ronald, Koller Daphne et al. Bayesian fault detection and diagnosis in dynamic systems // AAAI/IAAI. – 2000. – PP. 531-537.
  107. Murphy Kevin Patrick, Russell Stuart. Dynamic bayesian networks: representation, inference and learning: Ph.D. thesis / University of California, Berkeley. – University of California, Berkeley Dissertation, 2002. – 268 p.
  108. Smyth Padhraic. Hidden Markov models for fault detection in dynamic systems // Pattern Recognition. – 1994. – Vol. 27. – No. 1. – PP. 149-164.
  109. Soualhi A., Clerc G., Razik H. et al. Fault detection and diagnosis of induction motors based on hidden Markov model / Proc. of the 2012 XX-th International Conference on Electrical Machines. – IEEE, 2012.
  110. Li Jinbo, Pedrycz Witold, Jamal Iqbal. Multivariate time series anomaly detection: A framework of Hidden Markov Models // Applied Soft Computing. – 2017. – Vol. 60. – PP. 229-240.
  111. Bunks Carey, Mccarthy Dan, Al-Ani Tarik. Condition-based Maintenance Of Machines Using Hidden Markov Models // Mechanical Systems and Signal Processing. – 2000. – Vol. 14. – No. 4. – PP. 597-612.
  112. Don Mihiran Galagedarage, Khan Faisal. Dynamic process fault detection and diagnosis based on a combined approach of hidden Markov and Bayesian network model // Chemical Engineering Science. – 2019. – Vol. 201. – PP. 82-96.
  113. Ross Timothy J. Fuzzy Logic with Engineering Applications. – John Wiley & Sons, Ltd, 2010. – 585 p.
  114. Shahinpoor M., Wells D.J. Applications possibilities for fuzzy failure analysis, and diagnosis of reactor plant components and areas // Nuclear Engineering and Design. – 1980. – Vol. 61. – No. 1. – PP. 93-100.
  115. Koppen-Seliger B., Kiupel N., Schulte Kellinghaus H. et al. A fault diagnosis concept for a high-pressure-preheater line / Proc. of the 34-th IEEE Conference on Decision and Control. – IEEE, 1995.
  116. Буянкин В.М, Захаров В.Г. Прогнозирование неисправностей электропривода с использованием нечеткой нейронной сети // Вестник Московского автомобильно-дорожного института (государственного технического университета). – 2007. – № 4. – С. 21-23.
  117. Wenli Yang, Kwang Y. Lee, S. Tobias Junker et al. Fuzzy Fault Diagnosis and Accommodation System for Hybrid Fuel-Cell/Gas-Turbine Power Plant // IEEE Transactions on Energy Conversion. – 2010. – Vol. 25. – No. 4. – PP. 1187-1194.
  118. Seong Soo Choi, Ki Sig Kang, Han Gon Kim et al. Development of an on-line fuzzy expert system for integrated alarm processing in nuclear power plants // IEEE Transactions on Nuclear Science. – 1995. – Vol. 42. – No. 4. – PP. 1406-1418.
  119. Soon Heung Chang, Ki Sig Kang, Seong Soo Choi et al. Development of the On-Line Operator Aid System OASYS Using A Rule-Based Expert System and Fuzzy Logic for Nuclear Power Plants // Nuclear Technology. – 1995. – Vol. 112. – No. 2. – PP. 266-294.
  120. Na Man Gyun, Lee Yoon Joon, Hwang In Joon. A smart software sensor for feedwater flow measurement monitoring // IEEE Transactions on Nuclear Science. – 2005. – Vol. 52. – No. 6. – PP. 3026-3034.
  121. Holbert Keith E., Lin Kang. Nuclear Power Plant Instrumentation Fault Detection Using Fuzzy Logic // Science and Technology of Nuclear Installations. – 2012. – Vol. 2012. – PP. 1-11.
  122. GvishianiA.D., Agayan S.M., Bogoutdinov Sh. R. et al. Algorithm FLARS and recognition of time series anomalies // System Research and Information Technologies. – 2004. – Vol. 3. – No. 7.
  123. Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system // IEEE Transactions on Systems, Man, and Cybernetics. – 1993. – Vol. 23. – No. 3. – PP. 665-685.
  124. Takagi Tomohiro, Sugeno Michio. Fuzzy Identification of Systems and Its Applications to Modeling and Control // Readings in Fuzzy Sets for Intelligent Systems. – Elsevier, 1993. – PP. 387-403.
  125. Pillay Anand, Wang Jin. Modified failure mode and effects analysis using approximate reasoning // Reliability Engineering & System Safety. – 2003. – Vol. 79. – No. 1. – PP. 69-85.
  126. Lo C.H., Chan P.T., Wong Y.K. et al. Fuzzy-genetic algorithm for automatic fault detection in HVAC systems // Applied Soft Computing. – 2007. – Vol. 7. – No. 2. – PP. 554-560.
  127. Kecman Vojislav. Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. – MIT press, 2001. – 608 p.
  128. Zio E., Baraldi P., Popescu I. C. A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor // Annals of Nuclear Energy. – 2009. – Vol. 36. – No. 8. – PP. 1159-1169.
  129. Sakthivel N.R., Sugumaran V., Babudevasenapati S. Vibration based fault diagnosis of monoblock centrifugal pump using decision tree // Expert Systems with Applications. – 2010. – Vol. 37. – No. 6. – PP. 4040-4049.
  130. Aydin Ilhan, Karakose Mehmet, Akin Erhan. Artificial immune inspired fault detection algorithm based on fuzzy clustering and genetic algorithm methods / Proc. of the 2008 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications. – IEEE, 2008.

обнаружение неисправностей АЭС углубленная аналитика диагностика анализ данных